We introduce the temporal component of the stRDF data model and the stSPARQL query language, which have been recently proposed for the representation and querying of linked geospatial data that changes over time. With this temporal component in place, stSPARQL becomes a very expressive query language for linked geospatial data, going beyond the recent OGC standard GeoSPARQL, which has no support for valid time of triples. We present the implementation of the stSPARQL temporal component in the system Strabon, and study its performance experimentally. Strabon is shown to outperform all the systems it has been compared with.This work was supported in part by the European Commission project TELEIOS
This paper describes, develops, and validates SciLens, a method to evaluate the quality of scientific news articles. The starting point for our work are structured methodologies that define a series of quality aspects for manually evaluating news. Based on these aspects, we describe a series of indicators of news quality. According to our experiments, these indicators help non-experts evaluate more accurately the quality of a scientific news article, compared to nonexperts that do not have access to these indicators. Furthermore, SciLens can also be used to produce a completely automated quality score for an article, which agrees more with expert evaluators than manual evaluations done by non-experts. One of the main elements of SciLens is the focus on both content and context of articles, where context is provided by (1) explicit and implicit references on the article to scientific literature, and (2) reactions in social media referencing the article. We show that both contextual elements can be valuable sources of information for determining article quality. The validation of SciLens, done through a combination of expert and non-expert annotation, demonstrates its effectiveness for both semi-automatic and automatic quality evaluation of scientific news.
B ig Earth-observation (EO) data that are made freely available by space agencies come from various archives. Therefore, users trying to develop an application need to search within these archives, discover the needed data, and integrate them into their application. In this article, we argue that if EO data are published using the linked data paradigm, then the data discovery, data integration, and development of applications becomes easier. We present the life cycle of big, linked, and open EO data and show how to support their various stages using the software stack developed by the European Union (EU) research projects TELEIOS and the Linked Open EO Data for Precision Farming (LEO). We also show how this stack of tools can be used to implement an operational wildfire-monitoring service.
Geospatial data is at the core of the Semantic Web, of which the largest knowledge base contains more than 30 billions facts. Reasoning on these large amounts of geospatial data requires efficient methods for the computation of links between the resources contained in these knowledge bases. In this paper, we present Radon – efficient solution for the discovery of topological relations between geospatial resources according to the DE9-IM standard. Our evaluation shows that we outperform the state of the art significantly and by several orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.