This work presents a combined experimental and computational study of the deformation and fracture of microcantilever specimens made of chromium(rhenium)-alumina metal-matrix composite (MMC), with a particular focus on the failure properties of the metal-ceramic interfaces. The obtained experimental results show that the bending strength of microcantilevers containing alumina particles in critical cross-sections near specimen's fixed end is considerably higher than that of unreinforced chromium(rhenium) samples. Brittle cracking along chromium-alumina interfaces is the dominant fracture mode of the composite microcantilevers. The interface characteristics are determined in an indirect way by numerical simulations of the experiment with account of the actual specimen microstructure from the scanning electron microscope (SEM) images. A parametric study demonstrates that the overall material response may be reproduced by different sets of model parameters, whereas the actual failure mode permits to discriminate among the possible alternatives. Using this approach, the in situ values of the chromium-alumina interface cohesive strength and the fracture energy are estimated.
Knowing the current state of a bridge is of interest for a variety of reasons. Some parameters that determine the current state of a bridge are the material properties and boundary conditions. Using strain measurements obtained from a slow-moving vehicle on a bridge, the boundary condition and material properties are determined through a mechanistic-based approach. Observing that the sign of the curvature would change at locations near the support when a load passes over a bridge with end rotational restraints, a methodology for determining the boundary conditions is proposed and validated. The linear elastic properties of the material that the bridge is made up of is determined from the strain measured at locations where the stress is independent of the material property. In this procedure, the structure is analyzed assuming some material properties and the stress at the measured point is determined. Then, the material parameters in the isotropic Hooke’s law are determined so that the stress estimated from the experimentally determined strains agrees with that obtained from the analysis with arbitrarily assumed material parameters. A prestressed high-performance concrete pi-shaped girder tested under a three-axle slow-moving load with strains measured at different locations is used to bring out the efficacy and appropriateness of the proposed methodologies. The mean value of Young’s modulus of the prestressed concrete bridge agrees well with the experimentally determined Young’s modulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.