Knowing the current state of a bridge is of interest for a variety of reasons. Some parameters that determine the current state of a bridge are the material properties and boundary conditions. Using strain measurements obtained from a slow-moving vehicle on a bridge, the boundary condition and material properties are determined through a mechanistic-based approach. Observing that the sign of the curvature would change at locations near the support when a load passes over a bridge with end rotational restraints, a methodology for determining the boundary conditions is proposed and validated. The linear elastic properties of the material that the bridge is made up of is determined from the strain measured at locations where the stress is independent of the material property. In this procedure, the structure is analyzed assuming some material properties and the stress at the measured point is determined. Then, the material parameters in the isotropic Hooke’s law are determined so that the stress estimated from the experimentally determined strains agrees with that obtained from the analysis with arbitrarily assumed material parameters. A prestressed high-performance concrete pi-shaped girder tested under a three-axle slow-moving load with strains measured at different locations is used to bring out the efficacy and appropriateness of the proposed methodologies. The mean value of Young’s modulus of the prestressed concrete bridge agrees well with the experimentally determined Young’s modulus.
In view of practical significance of the compression behaviour of brick masonry, this article discusses the evolvement of an experimental programme based on a survey of the literature. Also, it is known that large scatter is expected in the mechanical properties of masonry and studies characterizing these statistical variations are scant in India. Using the evolved experimental programme and results of tests conducted, the statistical parameters, namely mean and coefficient of variation (COV) associated with the uniaxial compression behaviour of typical brick masonry used in South India have been determined in this article. For the masonry considered in this study, the mean values of peak compressive stress, strain corresponding to peak stress and elastic modulus are 2.82 MPa, 0.009 and 0.4 GPa respectively. The corresponding values of COV are 0.15, 0.2 and 0.12 respectively. In addition, a trilinear curve has been suggested as an idealized stress-strain relation for the brick masonry used in South India.
An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear capacity of RC columns. Shear–moment (V-M) interaction capacity diagram of an RC column, viewed alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when estimating shear capacity of RC columns. In addition, the method provides insights into the shear resistance mechanism in RC columns under the combined action of P-V-M, and it is simple to use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.