In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics:(i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur.The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.
The present paper focuses an optimal policy of an inventory model for deteriorating items with generalized demand rate and deterioration rate. Shortages are allowed and partially backlogged. The salvage value is included into deteriorated units. The main objective of the model is to minimize the total cost by optimizing the value of the shortage point, cycle length and order quantity. A numerical example is carried out to illustrate the model and sensitivity analyses of major parameters are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.