Four new macrocyclic dinuclear dibutyltin(IV) dithiocarbamate complexes of the type [Bu2Sn(dtc)]2, where dtc = hexane‐1,6‐diylbis(4‐fluorobenzyldithiocarbamate) anion (1), hexane‐1,6‐diylbis(4‐chlorobenzyldithiocarbamate) anion (2), hexane‐1,6‐diylbis(furfuryldithiocarbamate) anion (3) and hexane‐1,6‐diylbis(pyrrole‐2‐ylmethyldithiocarbamate) anion (4), have been prepared. The dithiocarbamate ligands efficiently self‐assemble with Bu2Sn(IV) to form bimetallic 26‐membered macrocycles. All the complexes have been characterized using elemental analysis, infrared and NMR (1H and 13C) spectroscopies and X‐ray crystallography. Single‐crystal X‐ray diffraction analysis of all the complexes confirms the formation of the dinuclear metallomacrocycles in which dithiocarbamate ligands are asymmetrically bound to the tin atoms. The coordination sphere around the tin atom in 1–4 can be described as a skew trapezoidal bipyramid. The dimensions of the cavity of the macrocycles of 1–4 are ca 8.0 × 9.0 Å2. Complexes 1–4 were evaluated for their in vitro anticancer activity against MCF‐7 and HL‐60 cells. Complexes 1 and 2 are more active against MCF‐7 and HL‐60. Thermal decomposition of 1 and 4 yielded tin sulfides. They were characterized using powder X‐ray diffraction (PXRD), high‐resolution transmission electron microscopy and UV diffuse reflectance and energy‐dispersive X‐ray spectroscopies. PXRD studies reveal that the as‐prepared tin sulfides are composed of orthorhombic phase of SnS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.