The technology of Artificial Intelligence (AI) brings tremendous possibilities for autonomous vehicle applications. One of the essential tasks of autonomous vehicle is environment perception using machine learning algorithms. Since the cyclists are the vulnerable road users, cyclist detection and tracking are important perception sub-tasks for autonomous vehicles to avoid vehicle-cyclist collision. In this paper, a robust method for cyclist detection and tracking is presented based on multi-layer laser scanner, i.e., IBEO LUX 4L, which obtains four-layer point cloud from local environment. First, the laser points are partitioned into individual clusters using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method based on subarea. Then, 37-dimensional feature set is optimized by Relief algorithm and Principal Component Analysis (PCA) to produce two new feature sets. Support Vector Machine (SVM) and Decision Tree (DT) classifiers are further combined with three feature sets, respectively. Moreover, Multiple Hypothesis Tracking (MHT) algorithm and Kalman filter based on Current Statistical (CS) model are applied to track moving cyclists and estimate the motion state. The performance of the proposed cyclist detection and tracking method is validated in real road environment.
With the development of connected vehicle (CV) and Vehicle to X (V2X) communication, more traffic data is being collected from the road network. In order to predict future traffic condition from connected vehicles' data in real-time, we present an online traffic condition evaluation model utilizing V2X communication. This model employs the Analytic Hierarchy Process (AHP) and the multilevel fuzzy set theory to fuse multiple sources of information for prediction. First, the contemporary vehicle data from the On Board Diagnostic (OBD) is fused with the static road data in the Road Side Unit (RSU). Then, the real-time traffic evaluation scores are calculated using the variable membership model. The real data collected by OBU in field test demonstrates the feasibility of the evaluation model. Compared with traditional evaluation systems, the proposed model can handle more types of data but demands less data transfer.
Advancement in the novel technology of connected vehicles has presented opportunities and challenges for smart urban transport and land use. To improve the capacity of urban transport and optimize land-use planning, a novel real-time regional route planning model based on vehicle to X communication (V2X) is presented in this paper. First, considering the traffic signal timing and phase information collected by V2X, road section resistance values are calculated dynamically based on real-time vehicular driving data. Second, according to the topology structure of the current regional road network, all predicted routes are listed based on the Dijkstra algorithm. Third, the predicted travel time of each alternative route is calculated, while the predicted route with the least travel time is selected as the optimal route. Finally, we design the test scenario with different traffic saturation levels and collect 150 sets of data to analyze the feasibility of the proposed method. The numerical results have shown that the average travel times calculated by the proposed optimal route are 8.97 seconds, 12.54 seconds, and 21.85 seconds, which are much shorter than the results of traditional navigation routes. This proposed model can be further applied to the whole urban traffic network and contribute to a greater transport and land-use efficiency in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.