Amrasca biguttula biguttula (Ishida) commonly known as cotton leafhopper is a severe pest of cotton and okra. Not much is known on this insect at molecular level due to lack of genomic and transcriptomic data. To prepare for functional genomic studies in this insect, we evaluated 15 common housekeeping genes (Tub, B-Tub, EF alpha, GADPH, UbiCF, RP13, Ubiq, G3PD, VATPase, Actin, 18s, 28s, TATA, ETF, SOD and Cytolytic actin) during different developmental stages and under starvation stress. We selected early (1st and 2nd), late (3rd and 4th) stage nymphs and adults for identification of stable housekeeping genes using geNorm, NormFinder, BestKeeper and RefFinder software. Based on the different algorithms, RP13 and VATPase are identified as the most suitable reference genes for quantification of gene expression by reverse transcriptase quantitative PCR (RT-qPCR). Based on RefFinder which comprehended the results of three algorithms, RP13 in adults, Tubulin (Tub) in late nymphs, 28S in early nymph and UbiCF under starvation stress were identified as the most stable genes. We also developed methods for feeding double-stranded RNA (dsRNA) incorporated in the diet. Feeding dsRNA targeting Snf7, IAP, AQP1, and VATPase caused 56.17–77.12% knockdown of targeted genes compared to control and 16 to 48% mortality of treated insects when compared to control.
Background Thrips tabaci is a severe pest of onion and cotton. Due to lack of information on its genome or transcriptome, not much is known about this insect at the molecular level. To initiate molecular studies in this insect, RNA was sequenced; de novo transcriptome assembly and analysis were performed. The RNAseq data was used to identify reference and RNAi pathway genes in this insect. Additionally, feeding RNAi was demonstrated in T. tabaci for the first time. Results From the assembled transcriptome, 27,836 coding sequence (CDS) with an average size of 1236 bp per CDS were identified. About 85.4% of CDS identified showed positive Blast hits. The homologs of most of the core RNAi machinery genes were identified in this transcriptome. To select reference genes for reverse-transcriptase real-time quantitative PCR (RT-qPCR) experiments, 14 housekeeping genes were identified in the transcriptome and their expression was analyzed by (RT-qPCR). UbiCE in adult, 28s in nymphs and SOD under starvation stress were identified as the most stable reference genes for RT-qPCR. Feeding dsSNF7 and dsAQP caused 16.4- and 14.47-fold reduction in SNF7 and AQP mRNA levels respectively, when compared to their levels in dsGFP fed control insects. Feeding dsSNF7 or dsAQP also caused 62 and 72% mortality in T. tabaci . Interestingly, simultaneous feeding of dsRNAs targeting SNF7 or AQP and one of the RNAi pathway genes ( Dicer - 2/Aubergine/Staufen ) resulted in a significant reduction in RNAi of target genes. These data suggest the existence of robust RNAi machinery in T. tabaci . Conclusion The current research is the first report of the assembled, analyzed and annotated RNAseq resource for T. tabaci , which may be used for future molecular studies in this insect. Reference genes validated across stages and starvation stress provides first-hand information on stable genes in T. tabaci. The information on RNAi machinery genes and significant knockdown of the target gene through dsRNA feeding in synthetic diet confirms the presence of efficient RNAi in this insect. These data provide a solid foundation for further research on developing RNAi as a method to manage this pest. Electronic supplementary material The online version of this article (10.1186/s12867-019-0123-1) contains supplementary material, which is available to authorized users.
Phenacoccus solenopsis is one of the major polyphagous crop pests in India. Inadequate genomic or transcriptomic resources have limited the molecular studies in this insect despite its huge economic importance. The existing molecular sequence resources of this insect were supplemented through RNA sequencing, de novo transcriptome assembly and analysis, which generated 12, 925 CDS from 23,643 contigs with an average size of 1077.5 bp per CDS and 85.1% positive BLAST hits with NCBI Non redundant (nr) database. Twenty three genes involved in RNAi machinery identified through BLASTx search against NCBI nr database suggested the existence of robust RNAi in mealybug. RNAi in P. solenopsis was demonstrated through knockdown of IAP (Inhibitor of Apoptosis), AQP (Aquaporin), CAL (Calcitonin), VATPase (V-type proton ATPase subunit F 1), bursicon, chitin synthase, SNF7 and α-amylase by injecting sequence specific dsRNA of respective genes in adult female. Additionally, feeding RNAi has been demonstrated in 2nd instar nymph through dsRNA uptake in plant. The knockdown of core RNAi machinery genes such as Dicer, Argonaute and Staufen significantly hampered RNAi efficiency in this insect. However, downregulation of dsRNases improved RNAi efficiency. Sequential studies for understanding RNAi in P. solenopsis using transcriptome sequences have also been reported. The present study provides a base for future research on developing RNAi as strategy for management of this pest.
Field experiments were conducted for three years during Kharif 2009-2011 to study the effect of foliar application of nutrients (N, Mg, Fe, Zn, Mn and B) on growth and yield parameters of Bt cotton. Pooled data indicated highest seed cotton yield (3421.4 kg/ha) with application of MgSO 4 1.0%+ ZnSO 4 0.5%. Better net returns ( 100760/ha) and improved B:C (4.06) ratio for MgSO 4 1.0% + ZnSO 4 0.5% clearly supported its application benefits to realize higher yield .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.