Biometric-based verification is widely employed on the smartphones for various applications, including financial transactions. In this work, we present a new multimodal biometric dataset (face, voice, and periocular) acquired using a smartphone. The new dataset is comprised of 150 subjects that are captured in six different sessions reflecting real-life scenarios of smartphone assisted authentication. One of the unique features of this dataset is that it is collected in four different geographic locations representing a diverse population and ethnicity. Additionally, we also present a multimodal Presentation Attack (PA) or spoofing dataset using a low-cost Presentation Attack Instrument (PAI) such as print and electronic display attacks. The novel acquisition protocols and the diversity of the data subjects collected from different geographic locations will allow developing a novel algorithm for either unimodal or multimodal biometrics.Further, we also report the performance evaluation of the baseline biometric verification and Presentation Attack Detection (PAD) on the newly collected dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.