Solvent polarity is important data being used in solvent selections for preliminary engineering design of chemical processes. In this work, a predictive model is proposed for estimating the solvatochromic polarity of electronic transition energy (ET) of Reichardt indicator for aqueous mixtures. To validate the model, the ET values of eighteen aqueous mixtures collected from the literature were used. The predictive model provided a good estimation of ET values with an overall deviation of 2.1%, compared with an ideal model (5.1%) from the mole fraction average. The linear relationship of the contribution factor of hydrogen bond donor interactions (CFHBD) in the predictive model with Kamlet–Taft acidity was newly proposed in order to extend the model for other aqueous mixtures. The predictive model is applicable to many aqueous mixtures and simply requires three properties of pure components as: (i) ET values, (ii) gas-phase dipole moment and (iii) Kamlet–Taft acidity.
The 2011 Great East Japan Tsunami exposed many hidden weaknesses in Japan's tsunami countermeasures. Since then, many improvements have been made in both structural measures (numerical simulations, coastal defense structures, building damage assessment and control forests) and nonstructural measures (warning/observation and evacuation). This review summarizes the lessons and improvements in the five-year time period after the 2011 event. After five years, most of the lessons from the 2011 tsunami have been applied, including more realistic tsunami simulations using very fine grids, methods to strengthen coastal defense structures, building evacuations and coastal forests, improved warning content and key points to improve evacuation measures. Nevertheless, large future challenges remain, such as an advanced simulation technique and system for real-time hazard and risk prediction, implementation of coastal defense structures/multilayer countermeasures and encouraging evacuation. In addition, among papers presented at the coastal engineering conference in Japan, the proportion of tsunami-related research in Japan increased from 15% to 35% because of the 2011 tsunami, and approximately 65-70% of tsunami-related studies involve numerical simulation, coastal structures and building damage. These results show the impact of the 2011 tsunami on coastal engineering related to academic institutions and consulting industries in Japan as well as the interest in each tsunami countermeasure.
Abstract. Tsunami fragility functions describe the probability of structural damage due to tsunami flow characteristics. Fragility functions developed from past
tsunami events (e.g., the 2004 Indian Ocean tsunami) are often applied directly,
without modification, to other areas at risk of tsunami for the purpose of
damage and loss estimations. Consequentially, estimates carry uncertainty
due to disparities in construction standards and coastal morphology between
the specific region for which the fragility functions were originally
derived and the region where they are being used. The main objective of
this study is to provide an alternative approach to assessing tsunami
damage, especially for buildings in regions where previously developed
fragility functions do not exist. A damage assessment model is proposed in
this study, where load-resistance analysis is performed for each building by evaluating hydrodynamic forces, buoyancies and debris impacts and comparing them to the resistance forces of each building. Numerical simulation was performed in this study to reproduce the 2011 Great East Japan tsunami in Ishinomaki, which is chosen as a study site. Flow depths and velocities were calculated for approximately 20 000 wooden buildings in Ishinomaki. Similarly, resistance forces (lateral and vertical) are estimated for each of these buildings. The buildings are then evaluated for their potential of collapsing. Results from this study reflect a higher accuracy in predicting building collapse when using the proposed load-resistance analysis, as compared to previously developed fragility functions in the same study area. Damage is also observed to have likely occurred before flow depth and velocity reach maximum values. With the above considerations, the proposed damage model might well be an alternative for building damage assessments in areas that have yet to be affected by modern tsunami events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.