Summary
The complex dynamics of a quarter‐scale model of a graphite nuclear reactor core, representative of the second generation of British advanced gas‐cooled nuclear reactors, is investigated numerically and experimentally. Advanced gas‐cooled nuclear reactor cores are polygonal, multilayer, arrays of graphite bricks, with each brick allowed to rock by design relative to each other in accordance with the boundary conditions. A 35 000 DOF, nonlinear finite element model of the core created by Atkins Nuclear, was analysed on a high performance computing facility at the University of Bristol, and a corresponding 8 t physical model, equipped with 3200 data acquisition channels, was built and tested on the University of Bristol 6‐DOF shaking table. In this paper, the two models are subjected to a series of (1) synthetic earthquake and (2) idealised harmonic input motions. The experimental data are used to compare and verify the two models and explore the dynamics of the core. A kinematic model of the response is also developed based solely on geometric constraints. The results are presented in the form of response maps and graphs. Important conclusions are drawn as to the dynamics and earthquake response of such systems, which inform numerical model validation. It is found that contrary to the case of a small number of rocking blocks that exhibit highly complex response patterns, the behaviour of the model at hand is both smooth and repeatable. An analogy between the response of the core and that of dense granular matter exhibiting particle interlocking and dilatancy is highlighted.
a b s t r a c tThe earthquake response of cantilever retaining walls is explored by means of theoretical analyses and shaking table testing conducted at University of Bristol (EERC -EQUALS). The theoretical investigations employ both limit analysis and wave-propagation methods, which take into account different aspects of the problem such as inertia, strength, kinematics and compatibility of deformations. The experimental programme encompasses different combinations of retaining wall geometries, soil configurations and input ground motions. The response analysis of the systems at hand aims at shedding light onto salient features of the problem, such as: (1) the magnitude of soil thrust and its point of application; (2) the relative sliding versus rocking of the wall base and the corresponding failure modes; (3) the importance of the interplay between soil stiffness, wall dimensions and excitation characteristics, as affecting the above; (4) the importance of wall dynamics and phase differences between peak stresses and displacements. The results of the experimental investigations are in good agreement with the theoretical models and provide a better understanding on the complex mechanics of the problem.
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above.
AbstractThe graphite components in the Advanced Gas Cooled Reactor (AGR) cores are subject to degradation processes that are predicted to lead to greater numbers of weakened and cracked components. These ageing issues need addressing to maintain their safety and reliable operation, hence the requirement for the computer models of the cores used for the seismic resilience assessments to be conservative and to represent larger percentages of damaged graphite components. The current models have undergone limited experimental validation for high levels of degradation, so there is a need to validate those numerical models and also to enhance the understanding of core dynamics by physical modelling and testing. This paper outlines the feasibility study of a quarter scale model rig of an AGR core developed by the University of Bristol. The damage scenarios to be considered in demonstrating the core seismic tolerability were defined. The principles of scale modelling were put under scrutiny in parallel with several practical aspects of material selection and component design and manufacturing. Several variants of physical models of different size and shape were proposed and their merits with respect to their feasibility and outcomes were discussed. Relevant aspects of instrumentation design are also presented. The rig is a viable experimental tool whose outputs can be employed directly in computer model validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.