Marsupenaeus japonicus has two types of phenotypic differences that are mainly reflected in the stripe pattern of the carapace. However, the underlying mechanism regulating the stripe patterns is not clear. In the present study, we first observed the composition of pigment cells and detected the contents of different carotenoids in the carapace of M. japonicus. We clearly observed the setae structure on the carapace. There were red pigment cells in the stripe pattern and yellow pigment cells in the other parts. Both red pigment cells and yellow pigment cells showed dendritic morphology. In the carapace, the content of astaxanthin was the highest, significantly (P < 0.05) higher than that of other carotenoids. Some differentially expressed genes between two pattern types of M. japonicus, may be associated with the body color formation, such as crustacyanin (CRCN), apolipoprotein D (ApoD), tubulin alpha-1 chain, cuticle protein, and ABC transporter, which were verified by quantitative PCR experiments. The amino acid composition and secondary structure of CRCN A2, CRCN C1, and ApoD were significantly different. The results of this study will help to elucidate the molecular mechanism of the differential pattern formation of M. japonicus and provide a reference for further exploration of the formation mechanism of crustacean color.
During the cultivation of Marsupenaeus japonicus, there are often obvious differences in the growth within the same family under the same food, water quality, and environment, which greatly affects cultivation efficiency. To explore the molecular mechanism of this growth difference, this study used RNA-seq technology to compare the transcriptomes of M. japonicus individuals with significant growth differences from the same family. A total of 1375 differentially expressed genes were identified, of which 1109 were upregulated and 266 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the differentially expressed genes, and the results showed that growth-related processes, including chitin metabolism, chitin-binding amino sugar metabolism, and antioxidant processes, including response to oxidative stress, peroxidase activity, antioxidant activity, and peroxidase activity, showed significant differences between the large-size and small-size groups. The expression levels of some differentially expressed genes, such as cuticular protein, low-density lipoprotein receptor, ecdysteroid kinase, myosin heavy chain, and apoptosis inhibitor, were verified by quantitative PCR experiments. One cuticle gene was annotated, and phylogenetic analysis showed that this sequence clustered with the penaeid cuticle genes. This study provides valuable data and a scientific basis for understanding the mechanism of growth differences in M. japonicus at the molecular-genetic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.