Machine learning algorithms are crucial for crop identification and mapping. However, many works only focus on the identification results of these algorithms, but pay less attention to their classification performance and mechanism. In this paper, based on Google Earth Engine (GEE), Sentinel-2 10 m resolution images during a specific phenological period of winter wheat were obtained. Then, support vector machine (SVM), random forest (RF), and classification and regression tree (CART) machine learning algorithms were employed to identify and map winter wheat in a large-scale area. The hyperparameters of the three machine learning algorithms were tuned by grid search and the 5-fold cross-validation method. The classification performance of the three machine learning algorithms were compared, the results of which demonstrate that SVM achieves best performance in identifying winter wheat, and its overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficient (Kappa) are 0.94, 0.95, 0.95, and 0.92, respectively. Moreover, 50 various combinations of training and validation sets were used to analyze the generalization ability of the algorithms, and the results show that the average OA of SVM, RF, and CART are 0.93, 0.92, and 0.88, respectively, thus indicating that SVM and RF are more robust than CART. To further explore the sensitivity of SVM, RF, and CART to variations of the algorithm parameters—namely, (C and gamma), (tree and split), and (maxD and minSP)—we employed the grid search method to iterate these parameters, respectively, and to analyze the effect of these parameters on the accuracy scores and classification residuals. It was found that with the change of (C and gamma) in (0.01~1000), SVM’s maximum variation of accuracy score is up to 0.63, and the maximum variation of residuals is 76,215 km2. We concluded that SVM is sensitive to the parameters (C and gamma) and presents a positive correlation. When the parameters (tree and split) change between (100~600) and (1~6), respectively, the RF’s maximum variation of accuracy score is 0.08, and the maximum variation of residuals is 1157 km2, indicating that RF is low in sensitivity toward the parameters (tree and split). When the parameters (maxD and minSP) are between (10~60), the maximum accuracy change value is 0.06, and the maximum variation of residuals is 6943 km2. Therefore, compared to RF, CART is sensitive to the parameters (maxD and minSP) and has poor robustness. In general, under the conditions of the hyperparameters, SVM and RF exhibit optimal classification performance, while CART has relatively inferior performance. Meanwhile, SVM, RF, and CART have different sensitivities toward the algorithm parameters; that is, SVM and CART are more sensitive to the algorithm parameters, while RF has low sensitivity toward changes in the algorithm parameters. The different parameters cause great changes in the accuracy scores and residuals, so it is necessary to determine the algorithm hyperparameters. Generally, default parameters can be used to achieve crop classification, but we recommend the enumeration method, similar to grid search, as a practical way to improve the classification performance of the algorithm if the best classification effect is expected.
The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.
The urban surface temperature is a complex integrated natural-human geographic phenomena; with the development of geostatistical methods and the application of multisource data, its research has gradually shifted from a single perspective to a study that integrates multiple factors such as nature and humanity. However, based on the context of the integration of natural and human factors and mutual constraints of each factor, the research on the mechanism of influence on urban habitat thermal environment needs to be further deepened. Therefore, this paper explores the spatial and temporal heterogeneity of urban surface temperature in Zhengzhou City during the summer of 2013–2020 from the perspective of multi-source data fusion, and uses the Geodetector model to quantitatively reveal the main influencing factors of urban surface temperature and the impact of superimposed factors on the compound effect of surface temperature. The results show that: (1) the urban thermal environment in the central of Zhengzhou city (region within the first ring) is obvious, and it is mainly concentrated in commercial and densely populated areas. (2) According to trend analysis, the northwest-southeast direction of the city continues to increase in temperature from 2013–2020, coupled with the direction of urban development. (3) Among the factors affecting urban surface temperature, normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI), tasseled cap wetness (TCW), and human elements are particularly typical. NDVI and TCW are strongly negatively correlated with the urban thermal environment, while NDBI and human elements are strongly positively correlated. (4) Mitigation of the urban thermal environment can start with the interaction mechanism of positive and negative factors. This study provides new ideas for the mechanism analysis of spatial and temporal evolution patterns of the urban thermal environment under multifactorial constraints, and provides suggestions and decisions for promoting green and sustainable urban development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.