Melatonin, a circadian rhythm-promoting molecule secreted mainly by the pineal gland, has a variety of biological functions and neuroprotective effects including control of sleep-wake cycle, seasonal reproduction, and body temperature as well as preventing neuronal cell death induced by neurotoxic substances. Melatonin also modulates neural stem cell (NSC) function including proliferation and differentiation in embryonic brain tissue. However, the involvement of melatonin in adult neurogenesis is still not clear. Here, we report that precursor cells from adult mouse subventricular zone (SVZ) of the lateral ventricle, the main neurogenic area of the adult brain, express melatonin receptors. In addition, precursor cells derived from this area treated with melatonin exhibited increased proliferative activity. However, when cells were treated with luzindole, a competitive inhibitor of melatonin receptors, or pertussis toxin, an uncoupler of Gi from adenylate cyclase, melatonin-induced proliferation was reduced. Under these conditions, melatonin induced the differentiation of precursor cells to neuronal cells without an upregulation of the number of glia cells. Because stem cell replacement is thought to play an important therapeutic role in neurodegenerative diseases, melatonin might be beneficial for stimulating endogenous neural stem cells.
Oxidative stress is defined as a disturbance in the prooxidant-antioxidant balance, leading to potential cell damage. Reactive oxygen species such as superoxide radicals, hydroxyl radicals and hydrogen peroxide may act also as secondary intermediaries in intracellular signaling leading to cell death. The neuroprotective effect of melatonin has been observed both in vivo and in vitro. The objective of this research, therefore, was to better understand the cellular mechanisms of neuronal cell degeneration induced via oxidative stress and the protective roles of melatonin on this cell death. In the present study, the effects of melatonin on H(2)O(2)-induced neuronal cell degeneration in human dopaminergic neuroblastoma SH-SY5Y cultured cells were investigated. The results showed that H(2)O(2) significantly decreased cell viability and melatonin reversed the toxic effects of H(2)O(2). An inhibition of caspase enzyme activity by Ac-DEVD-CHO, a caspase-3 inhibitor, significantly increased cell viability in H(2)O(2)-treated cells. The phosphorylation of transcription factors, nuclear factor kappa B (NF-kappaB) was increased in H(2)O(2)-treated cells and this effect was abolished by melatonin. Translocation of phosphorylated NF-kappaB to perinuclear and nuclear sites, estimated using immunofluorescence, occurred to a greater extent in H(2)O(2)-treated cells than in untreated control cells and again this effect was abolished by melatonin. In addition, induction of Bcl-2 and Bax proteins was demonstrated in SH-SY5Y cultured cells treated with H(2)O(2), whereas the induction of Bax but not Bcl-2 was diminished by melatonin. In light of these finding, it is possible that the antioxidative stress effect of melatonin associated with inhibition of Bax expression, may offer a means of treating neuronal degeneration and disease.
Physicians have noted since antiquity that their patients complained of less pain and required fewer analgesics at night times. In most species, including the humans, the circulating levels of melatonin, a substance with analgesic and hypnotic properties, exhibit a pronounced circadian rhythm with serum levels being high at night and very low during day times. Moreover, melatonin exhibits maximal analgesic effects at night, pinealectomy abolishes the analgesic effects of melatonin, and mu opioid receptor antagonists disrupt the day-night rhythm of nociception. It is believed that melatonin, with its sedative and analgesic effects, is capable of providing a pain free sleep so that the body may recuperate and restore itself to function again at its peak capacity. Moreover, in conditions when pain is associated with extensive tissue injury, melatonin's ability to scavenge free radicals and abort oxidative stress is yet another beneficial effect to be realized. Since melatonin may behave as a mixed opioid receptor agonist-antagonist, it is doubtful that a physician simply could potentiate the analgesic efficacy of narcotics such as morphine by coadministering melatonin. Therefore, future research may synthesize highly efficacious melatonin analogues capable of providing maximum analgesia and hopefully being devoid of addiction liability now associated with currently available narcotics.
Our results suggest that activation of the 5-HT2A receptor leads to an enhancement of NO production in trigeminovascular pathway. NO may trigger migraine attacks by inducing cerebral vasodilation and sensitizing the perivascular nociceptors and central nociceptive neurons in trigeminovascular system. Up-regulation of this pronociceptive receptor can increase headache attacks and contributes to the development of chronic daily headache.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.