Background: Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. CMT is classified into 2 main subgroups: a demyelinating and an axonal type. Further subdivisions within these 2 main categories exist and intermediate forms have more recently been described. Inheritance can be autosomal dominant, recessive or X-linked. CMT is associated with more than 30 loci, and about 25 causative genes have been described thus far. Methods: We studied epidemiological, clinical and genetic characteristics of CMT in the Cypriot population. Results: The prevalence of CMT in Cyprus on January 15, 2009, is estimated to be 16 per 100,000. Thirty-three families and 8 sporadic patients were ascertained. CMT was demyelinating in 52%, axonal in 33% and intermediate in 15% of the patients. Thirteen families had PMP22 duplication, 3 families had the PMP22 S22F mutation, 4 families had GJB1/Cx32 mutations, 2 families had different MPZ mutations, 1 of them novel, and 2 families had different MFN2 mutations. Nine families and 8 sporadic patients were excluded from the common CMT genes. Conclusion: The most frequent CMT mutation worldwide, the PMP22 duplication, is also the most frequent CMT mutation in the Cypriot population. Five out of the 8 other mutations are novel, not reported in other populations.
BackgroundDistal hereditary motor neuronopathies (dHMN) are a group of genetic disorders characterised by motor neuron degeneration leading to muscle weakness that are caused by mutations in various genes. HMNJ is a distinct form of the disease that has been identified in patients from the Jerash region of Jordan. Our aim was to identify and characterise the genetic cause of HMNJ.MethodsWe used whole exome and Sanger sequencing to identify a novel genetic variant associated with the disease and then carried out immunoblot, immunofluorescence and apoptosis assays to extract functional data and clarify the effect of this novel SIGMAR1 mutation. Physical and neurological examinations were performed on selected patients and unaffected individuals in order to re-evaluate clinical status of patients 20 years after the initial description of HMNJ as well as to evaluate new and previously undescribed patients with HMNJ.ResultsA homozygous missense mutation (c.500A>T, N167I) in exon 4 of the SIGMAR1 gene was identified, cosegregating with HMNJ in the 27 patients from 7 previously described consanguineous families and 3 newly ascertained patients. The mutant SIGMAR1 exhibits reduced expression, altered subcellular distribution and elevates cell death when expressed.ConclusionIn conclusion, the homozygous SIGMAR1 c.500A>T mutation causes dHMN of the Jerash type, possibly due to a significant drop of protein levels. This finding is in agreement with other SIGMAR1 mutations that have been associated with autosomal recessive dHMN with pyramidal signs; thus, our findings further support that SIGMAR1 be added to the dHMN genes diagnostic panel.
Spinal muscular atrophy (SMA) is an autosomal recessive, neurodegenerative disorder characterised commonly by proximal muscle weakness and wasting in the absence of sensory signs. Deletion or disruption of the SMN1 gene causes the disease. The SMN1 gene is located within an inverted duplication on chromosome 5q13 with the genes SMN2, NAIP and GTF2H2. MLPA analysis of 13 Cypriot SMA patients revealed that, 12 patients carried a homozygous SMN1 gene deletion and one patient carried two copies of the SMN1 gene. Two of 13 cases were a consequence of a paternally originating de novo mutation. Five genotypes were identified within the population, with the most frequent being a homozygous SMN1 and NAIP genes deletion. In conclusion, genotype-phenotype correlation revealed that SMN2 is inversely related to disease severity and that NAIP and GTF2H2 act as negative modifiers. This study provided, for the first time, a comprehensive overview of gene copy numbers and inheritance patterns within Cypriot SMA families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.