Medical tools used to bolster decision-making by medical specialists who offer malaria treatment include image processing equipment and a computer-aided diagnostic system. Malaria images can be employed to identify and detect malaria using these methods, in order to monitor the symptoms of malaria patients, although there may be atypical cases that need more time for an assessment. This research used 7000 images of Xception, Inception-V3, ResNet-50, NasNetMobile, VGG-16 and AlexNet models for verification and analysis. These are prevalent models that classify the image precision and use a rotational method to improve the performance of validation and the training dataset with convolutional neural network models. Xception, using the state of the art activation function (Mish) and optimizer (Nadam), improved the effectiveness, as found by the outcomes of the convolutional neural model evaluation of these models for classifying the malaria disease from thin blood smear images. In terms of the performance, recall, accuracy, precision, and F1 measure, a combined score of 99.28% was achieved. Consequently, 10% of all non-dataset training and testing images were evaluated utilizing this pattern. Notable aspects for the improvement of a computer-aided diagnostic to produce an optimum malaria detection approach have been found, supported by a 98.86% accuracy level.
Image processing technologies and computer-aided diagnosis are medical technologies used to support decision-making processes of radiologists and medical professionals who provide treatment for lung disease. These methods involve using chest X-ray images to diagnose and detect lung lesions, but sometimes there are abnormal cases that take some time to occur. This experiment used 5810 images for training and validation with the MobileNet, Densenet-121 and Resnet-50 models, which are popular networks used to classify the accuracy of images, and utilized a rotational technique to adjust the lung disease dataset to support learning with these convolutional neural network models. The results of the convolutional neural network model evaluation showed that Densenet-121, with a state-of-the-art Mish activation function and Nadam-optimized performance. All the rates for accuracy, recall, precision and F1 measures totaled 98.88%. We then used this model to test 10% of the total images from the non-dataset training and validation. The accuracy rate was 98.97% for the result which provided significant components for the development of a computer-aided diagnosis system to yield the best performance for the detection of lung lesions.
Software testing using traditional genetic algorithms (GAs) minimizes the required number of test cases and reduces the execution time. Currently, GAs are adapted to enhance performance when finding optimal solutions. The multiple-searching genetic algorithm (MSGA) has improved upon current GAs and is used to find the optimal multicast routing in network systems. This paper presents an analysis of the optimization of test case generations using the MSGA by defining suitable values of MSGA parameters, including population size, crossover operator, and mutation operator. Moreover, in this study, we compare the performance of the MSGA with a traditional GA and hybrid GA (HGA). The experimental results demonstrate that MSGA reaches the maximum executed branch statements in the lowest execution time and the smallest number of test cases compared to the GA and HGA.
Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.
Three-dimensional (3D) technology has attracted users’ attention because it creates objects that can interact with a given product in a system. Nowadays, Thailand’s government encourages sustainability projects through advertising, trade shows and information systems for small rural entrepreneurship. However, the government’s systems do not include virtual products with a 3D display. The objective of this study was four-fold: (1) develop a prototype of 3D handicraft product application for smartphones; (2) create an online questionnaire to collect user usage assessment data in terms of five sentiment levels—strongly negative, negative, neutral, positive and strongly positive—in response to the usage of the proposed 3D application; (3) evaluate users’ sentiment level in 3D handicraft product application usage; and (4) investigate attracting users’ attention to handicraft products after using the proposed 3D handicraft product application. The results indicate that 78.87% of participants’ sentiment was positive and strongly positive under accept using 3D handicraft product application, and evaluations in terms of assessing attention paid by participants to the handicraft products revealed that positive and strongly positive sentiment was described by 79.61% of participants. The participants’ evaluation results in this study prove that our proposed 3D handicraft product application affected users by attracting their attention towards handicraft products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.