Extrapulmonary tuberculosis (EPTB) accounts for more than 20% of tuberculosis (TB) cases. Xpert MTB/RIF (Xpert) (Cepheid, Sunnyvale, CA, USA) is a fully automated amplification system, for which excellent results in the diagnosis of pulmonary TB in highly endemic countries have been recently reported. We aimed to assess the performance of the Xpert system in diagnosing EPTB in a low incidence setting.We investigated with Xpert a large number of consecutive extrapulmonary clinical specimens (1,476, corresponding to 1,068 patients) including both paediatric (494) and adult samples.We found, in comparison with a reference standard consisting of combination of culture and clinical diagnosis of TB, an overall sensitivity and specificity of 81.3% and 99.8% for Xpert, while the sensitivity of microscopy was 48%. For biopsies, urines, pus and cerebrospinal fluids the sensitivity exceeded 85%, while it was slightly under 80% for gastric aspirates. It was, in contrast, lower than 50% for cavitary fluids. High sensitivity and specificity (86.9% and 99.7%, respectively) were also obtained for paediatric specimens.Although the role of culture remains central in the microbiological diagnosis of EPTB, the sensitivity of Xpert in rapidly diagnosing the disease makes it a much better choice compared to smear microscopy. The ability to rule out the disease still remains suboptimal.
The envelope glycoproteins of human cytomegalovirus (HCMV) virions are incompletely characterized. We have analyzed complex formation between glycoprotein M (gM or gpUL100) and a second glycoprotein. gM-homologous proteins are conserved throughout the herpesvirus family and represent type III membrane proteins containing multiple hydrophobic sequences. In extracellular HCMV particles, gM was found to be complexed through disulfide bonds to a second protein with an apparent molecular mass of 50 to 60 kDa. The 50-to 60-kDa protein was found to be derived from reading frame UL73 of HCMV strain AD169. UL73-homologous genes are also conserved within herpesviruses. When transiently expressed by itself, the UL73 gene product consisted of a protein of 18 kDa. However, in the presence of gM, the UL73 gene product was posttranslationally modified to the 50-to 60-kDa species. Thus, gM and the UL73 gene product, which represents the gN homolog of herpesviruses, form a disulfide-linked complex in HCMV virions. Transient expression of gM and gN followed by fluorescence imaging with monoclonal antibodies against either protein demonstrated that complex formation was required for transport of the proteins from the endoplasmic reticulum to the Golgi and trans-Golgi compartments. Finally, we tested the gM-gN complex for reactivity with sera from HCMV-seropositive donors. Whereas most sera failed to react with either gM or gN when expressed alone, 62% of sera were positive for the gM-gN complex. Because a murine monoclonal antibody reactive with gN in the gM-gN complex efficiently neutralizes infectious virus, the gM-gN complex may represent a major antigenic target of antiviral antibody responses.
Human cytomegalovirus (HCMV) clinical isolates display genetic polymorphisms in multiple genes. Some authors have suggested that those polymorphisms may be implicated in HCMV-induced immunopathogenesis, as well as in strain-specific behaviours, such as tissue-tropism and ability to establish persistent or latent infections. This review summarises the features of the main clustered HCMV polymorphic open reading frames and also briefly cites other variable loci within the viral genome. The implications of gene polymorphisms are discussed in terms of potentially advantageous higher fitness obtained by the strain, but also taking into account that the published data are often speculative. The last section of this review summarises and critically analyses the main literature reports about the linkage of strain specific genotypes with clinical manifestations of HCMV disease in different patient populations affected by severe cytomegalovirus infections, namely immunocompromised subjects and congenitally infected newborns.
Previously, we identified the glycoprotein gO gene, UL74, as a hypervariable locus in the human cytomegalovirus (HCMV) genome [Virology 293 (2002) 281]. Here, we analyze gO from 50 isolates from congenitally infected newborns, transplant recipients, and HIV/AIDS patients from Italy, Australia, and UK. These are compared to four gO groups described from USA transplantation patients [J. Virol. 76 (2002) 10841]. Phylogenetic analyses identified seven genotypes. Divergence between genotypes was up to 55% and within 3%. Discrete linkage was shown between seven hypervariable gO and gN genotypes, but not with gB. This suggests interactions, while gN and gO are known to form complexes with distinct conserved glycoproteins gM, gH/gL, respectively, both are involved in fusogenic entry and exit. Codon-based maximum likelihood models showed evidence for sites of positive selection. Further analyses of disease relationships should take into account these newly defined gO/gN groups.
Human cytomegalvirus (HCMV) ORF UL73 is a polymorphic locus, encoding the viral glycoprotein gpUL73-gN, a component of the gC-II envelope complex. The previously identified gN genomic variants, denoted gN-1, gN-2, gN-3 and gN-4, were further investigated in this work by analysing a large panel of HCMV clinical isolates collected from all over the world (223 samples). Sequencing and phylogenetic analysis confirmed the existence of the four gN genotypes, but also allowed the identification of a novel subgroup belonging to the gN-3 genotype, which was designated gN-3b. The number of non-synonymous (d N ) and synonymous (d S ) nucleotide substitutions and their ratio (d N /d S ) were estimated among the gN genotypes to evaluate the possibility of positive selection. Results showed that the four variants evolved by neutral (random) selection, but that the gN-3 and gN-4 genotypes are maintained by positive selective pressure. The 223 HCMV clinical isolates were subdivided according to their geographical origin, and four main regions of gN prevalence were identified: Europe, China, Australia and Northern America. The gN variants were found to be widespread and represented within the regions analysed without any significant difference, and no new genotype was detected. Finally, for clinical and epidemiological purposes, a rapid and low-cost method for genetic grouping of the HCMV clinical isolates was developed based on the RFLP revealed by SacI, ScaI and SalI digestion of the PCR-amplified UL73 sequence. This technique enabled us to distinguish all four gN genomic variants and also their subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.