The benzamide PB12 (N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide) (1), already reported as potent and selective dopamine D(4) receptor ligand, has been modified searching for structural features that could lead to D(3) receptor affinity. Changes in the aromatic ring linked to N-1 piperazine ring led to the identification of 2-methoxyphenyl and 2,3-dichlorophenyl derivatives (compounds 6 and 13) displaying moderate D(3) affinity (K(i) = 145 and 31 nM, respectively). Intermediate alkyl chain elongation in compounds 1, 6, and 13 improved binding affinity for the D(3) receptor and decreased the D(4) affinity (compounds 18-26). Among these latter compounds, the N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (19) was further modified with the replacement or of the 2,3-dichlorophenyl moiety (compounds 27-30) or of the 3-methoxyphenyl ring (compounds 31-41). In this way, we identified several high-affinity D(3) ligands (0.13 nM < K(i)'s < 4.97 nM) endowed with high selectivity over D(2), D(4), 5-HT(1A), and alpha(1) receptors. In addition, N-[4-[4-(2,3-dimethylphenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (27) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (41) appear to be valuable candidates for positron emission tomography (PET) because of their affinity values, lipophilicity properties, and liability of (11)C labeling in the O-methyl position.
Starting from the previously reported 5-HT 7 receptor agents 4-7 with N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamide structure, the 1-(2-methylthiophenyl)-, 1-(2-diphenyl)-, 1-(2-isopropylphenyl)-, and 1-(2-methoxyphenyl)piperazine derivatives 8-31 were designed with the primary aim to obtain new compounds endowed with suitable physicochemical properties for rapid and extensive penetration into the brain. The affinities for 5-HT 7, 5-HT 1A, and D 2 receptors of compounds 8-31 were assessed, and several compounds displayed 5-HT 7 receptor affinities in the nanomolar range. Among these, N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (25) showed high 5-HT 7 receptor affinity (Ki = 0.58 nM), high selectivity over 5-HT 1A and D 2 receptors (324- and 245-fold, respectively), and agonist properties (maximal effect = 82%, EC 50 = 0.60 microM). After intraperitoneal injection in mice, 25 rapidly reached the systemic circulation and entered the brain. Its brain concentration-time profile paralleled that in plasma, indicating that 25 rapidly and freely distributes across the blood-brain barrier. Compound 25 underwent N-dealkylation to the corresponding 1-arylpiperazine metabolite.
N-formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) that play critical roles in inflammatory reactions, and FPR-specific interactions can possibly be used to facilitate the resolution of pathological inflammatory reactions. Recent studies indicated that FPRs have stereo-selective preference for chiral ligands. Here, we investigated the structure-activity relationship of 24 chiral ureidopropanamides, including previously reported compounds PD168368/PD176252 and their close analogs, and used molecular modeling to define chiral recognition by FPR2. Unlike previously reported 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones, whose R-forms preferentially activated FPR1/FPR2, we found that four S-enantiomers in the seven ureidopropanamide pairs tested preferentially activated intracellular Ca2+ flux in FPR2-transfected cells, while the R-counterpart was more active in two enantiomer pairs. Thus, active enantiomers of FPR2 agonists can be in either R- or S- configurations, depending on the molecular scaffold and specific substituents at the chiral center. Using molecular modeling approaches, including field point methodology, homology modeling, and docking studies, we propose a model that can explain stereoselective activity of chiral FPR2 agonists. Importantly, our docking studies of FPR2 chiral agonists correlated well with the FPR2 pharmacophore model derived previously. We conclude that the ability of FPR2 to discriminate between the enantiomers is the consequence of the arrangement of the three asymmetric hydrophobic subpockets at the main orthosteric FPR2 binding site with specific orientation of charged regions in the subpockets.
We here report the synthesis of compounds structurally related to the high-affinity dopamine D(3) receptor ligand N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (1). All compounds were specifically designed as potential PET radioligands for brain D(3) receptors visualization, having lipophilicity within a range for high brain uptake and weak nonspecific binding (2 < ClogP < 3.5) and bearing a methoxy substituent for easy access to labeling with the positron emitter isotope (11)C. N-[4-[4-(5-methoxy-2-benzisoxazolyl)piperazin-1-yl]butyl]-4-(4-morpholinyl)benzamide (22), N-[4-[4-(5-methoxy-2-benzisoxazolyl)piperazin-1-yl]butyl]-4-(1H-imidazol-1-yl)benzamide (23), and N-[4-[4-(5-methoxy-2-benzisoxazolyl)piperazin-1-yl]butyl]-5-(2-furanyl)-1H-pyrazole-3-carboxamide (24) displayed good D(3) receptor affinities (K(i) values 38.0, 22.6, and 21.3 nM, respectively) and were selective over D(2) receptor. Moreover, compounds 22-24 were able to permeate the Caco-2 cell monolayer, differently from compound 1. Although the goal to identify potential PET radioligands with subnanomolar affinities for D(3) receptor was not achieved, the proposed strategy could be a starting point for future developments.
Almost no new therapeutic applications have been proposed for molecules targeting the 5-HT(1A) receptor, during the years covered by the present review. The discovery that stimulation of 5-HT(1A) receptor can promote neurogenesis will likely renew the interest for selective 5-HT(1A) receptor agonists as therapeutics to replace neural populations damaged by disease or injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.