Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.
Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects regulated by these adaptors in tumours might be crucial for the identification of novel targets and the development of innovative therapeutic strategies for human cancer. In this review we will discuss the relevance of adaptor proteins in signalling originating from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation within the context of cell transformation and tumour progression.Herein, we will specifically underline the contribution of p130CAS, NEDD9, CRK, and the IPP complex (ILK, PINCH and PARVIN) to cancer, along with the more recently identified p140CAP.
BACKGROUND: Opioid-related adverse events are a serious problem in hospitalized patients. Little is known about patients who are likely to experience opioid-induced respiratory depression events on the general care floor and may benefit from improved monitoring and early intervention. The trial objective was to derive and validate a risk prediction tool for respiratory depression in patients receiving opioids, as detected by continuous pulse oximetry and capnography monitoring. METHODS: PRediction of Opioid-induced respiratory Depression In patients monitored by capnoGraphY (PRODIGY) was a prospective, observational trial of blinded continuous capnography and oximetry conducted at 16 sites in the United States, Europe, and Asia. Vital signs were intermittently monitored per standard of care. A total of 1335 patients receiving parenteral opioids and continuously monitored on the general care floor were included in the analysis. A respiratory depression episode was defined as respiratory rate ≤5 breaths/min (bpm), oxygen saturation ≤85%, or end-tidal carbon dioxide ≤15 or ≥60 mm Hg for ≥3 minutes; apnea episode lasting >30 seconds; or any respiratory opioid-related adverse event. A risk prediction tool was derived using a multivariable logistic regression model of 46 a priori defined risk factors with stepwise selection and was internally validated by bootstrapping. RESULTS: One or more respiratory depression episodes were detected in 614 (46%) of 1335 general care floor patients (43% male; mean age, 58 ± 14 years) continuously monitored for a median of 24 hours (interquartile range [IQR], 17–26). A multivariable respiratory depression prediction model with area under the curve of 0.740 was developed using 5 independent variables: age ≥60 (in decades), sex, opioid naivety, sleep disorders, and chronic heart failure. The PRODIGY risk prediction tool showed significant separation between patients with and without respiratory depression ( P < .001) and an odds ratio of 6.07 (95% confidence interval [CI], 4.44–8.30; P < .001) between the high- and low-risk groups. Compared to patients without respiratory depression episodes, mean hospital length of stay was 3 days longer in patients with ≥1 respiratory depression episode (10.5 ± 10.8 vs 7.7 ± 7.8 days; P < .0001) identified using continuous oximetry and capnography monitoring. CONCLUSIONS: A PRODIGY risk prediction model, derived from continuous oximetry and capnography, accurately predicts respiratory depression episodes in patients receiving opioids on the general care floor. Implementation of the PRODIGY score to determine the need for continuous monitoring may be a first step to reduce the incidence and consequences of respiratory compromise in patients receiving opioids on the general care floor.
To investigate the mechanisms through which p130Cas adaptor protein is linked to tumorigenesis, we generated mouse mammary tumor virus (MMTV)-p130Cas mice overexpressing p130Cas in the mammary gland. MMTVp130Cas transgenic mice are characterized by extensive mammary epithelial hyperplasia during development and pregnancy and by delayed involution at the end of lactation. These phenotypes are associated with activation of Src kinase, extracellular signalregulated kinase 1/2, mitogen-activated protein kinase, and Akt pathways, leading to an increased rate of proliferation and a decreased apoptosis. A double-transgenic line derived from crossing MMTV-p130Cas with MMTV-HER2-Neu mice expressing the activated form of the HER2-Neu oncogene develops multifocal mammary tumors with a significantly shorter latency than the HER2-Neu parental strain alone. Mammary epithelial cells isolated from tumors of double-transgenic mice display increased tyrosine phosphorylation, c-Src, and Akt activation compared with cells derived from HER2-Neu tumors. In addition, p130Cas down-regulation by RNA interference increases apoptosis in HER2-Neu-expressing cells, indicating that p130Cas regulates cell survival. Consistently with the double-transgenic mice model, p130Cas is overexpressed in a significant subset of human breast cancers and high levels of p130Cas in association with HER2 expression correlate with elevated proliferation. These findings provide evidences for a role of p130Cas as a positive regulator of both proliferation and survival in normal and transformed mammary epithelial cells. Its overexpression contributes to HER2-Neu-induced breast tumorigenesis, thus identifying this protein as a putative target for clinical therapy. (Cancer Res 2006; 66(9): 4672-80)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.