To assess if mitochondrial DNA (mtDNA) variants are associated with mutations in BRCA susceptibility genes and to investigate the possible role of mitochondrial alterations as susceptibility markers in familial breast cancer (BC), 22 patients with or without BRCA1/BRCA2 mutations, 14 sporadic BC patients and 20 healthy subjects were analyzed. In the D-loop and in the MTND4 region, variants significantly associated with BRCA1 carriers were identified. Moreover, examination of mitochondrial haplogroups revealed X as the most significantly frequent haplogroup in BRCA1 carriers (P=0.005), and H as significantly linked to BRCA2 carriers (P=0.05). Our data suggest the involvement of the mitochondrial genome in the pathogenetic and molecular mechanism of familial BC disease.
Mitochondrial translation defects can be due to mutations affecting mitochondrial- or nuclear-encoded components. The number of known nuclear genes involved in mitochondrial translation has significantly increased in the past years. RCC1L (WBSCR16), a putative GDP/GTP exchange factor, has recently been described to interact with the mitochondrial large ribosomal subunit. In humans, three different RCC1L isoforms have been identified that originate from alternative splicing but share the same N-terminus, RCC1L
V1
, RCC1L
V2
and RCC1L
V3
. All three isoforms were exclusively localized to mitochondria, interacted with its inner membrane and could associate with homopolymeric oligos to different extent. Mitochondrial immunoprecipitation experiments showed that RCC1L
V1
and RCC1L
V3
associated with the mitochondrial large and small ribosomal subunit, respectively, while no significant association was observed for RCC1L
V2
. Overexpression and silencing of RCC1L
V1
or RCC1L
V3
led to mitoribosome biogenesis defects that resulted in decreased translation. Indeed, significant changes in steady-state levels and distribution on isokinetic sucrose gradients were detected not only for mitoribosome proteins but also for GTPases, (GTPBP10, ERAL1 and C4orf14), and pseudouridylation proteins, (TRUB2, RPUSD3 and RPUSD4). All in all, our data suggest that RCC1L is essential for mitochondrial function and that the coordination of at least two isoforms is essential for proper ribosomal assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.