Multiscale methods for second order elliptic equations based on non-overlapping domain decomposition schemes have great potential to take advantage of multi-core, state-of-the-art parallel computers. These methods typically involve solving local boundary value problems followed by the solution of a global interface problem. Known iterative procedures for the solution of the interface problem have typically slow convergence, increasing the overall cost of the multiscale solver. To overcome this problem we develop a scalable recursive solution method for such interface problem that replaces the global problem by a family of small interface systems associated with adjacent subdomains, in a hierarchy of nested subdomains. Then, we propose a novel parallel algorithm to implement our recursive formulation in multi-core devices using the Multiscale Robin Coupled Method by Guiraldello et al. (2018), that can be seen as a generalization of several multiscale mixed methods. Through several numerical studies we show that the new algorithm is very fast and exhibits excellent strong and weak scalability. We consider very large problems, that can have billions of discretization cells, motivated by the numerical simulation of subsurface flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.