Inefficient delivery is a major obstacle to the development of peptide-based drugs targeting the intracellular compartment. We recently showed that selectively inhibiting integrin outside-in signaling using a peptide (mP6) derived from the Gα13-binding ExE motif within the integrin β3 cytoplasmic domain had antithrombotic effects. Here, we engineered lipid-stabilized, high-loading peptide nanoparticles (HLPN), in which a redesigned ExE peptide (M3mP6) constituted up to 70% of the total nanoparticle molarity, allowing efficient in vivo delivery. We observed that M3mP6 HLPN inhibited occlusive thrombosis more potently than a clopidogrel/aspirin combination without adverse effects on hemostasis in rodents. Furthermore, M3mP6 HLPN synergized with P2Y12 receptor inhibitors or the clopidogrel/aspirin combination in preventing thrombosis, without exacerbating hemorrhage. M3mP6 HLPN also inhibited intravascular coagulation more potently than the P2Y12 inhibitor cangrelor. Postischemia injection of M3mP6 HLPN protected the heart from myocardial ischemia–reperfusion injury in a mouse model. This study demonstrates an efficient in vivo peptide delivery strategy for a therapeutic that not only efficaciously prevented thrombosis with minimal bleeding risk but also protected from myocardial ischemia–reperfusion injury in mice.
Polyethylene glycol (PEG) coatings have been widely applied in pharmaceutical and biomedical systems to prevent nonspecific protein absorption, increase vesicle blood circulation time, and sustain drug release. This study systematically investigated the planar interfacial organization of phospholipid monolayers containing various amounts of PEG conjugations before and after enzyme-catalyzed degradation of the lipids using X-ray reflectivity and grazing incidence X-ray diffraction techniques. Results showed that attaching PEG to the headgroup of the lipids up to 15 mol % had limited effects on molecular packing of the lipid monolayers in the condensed phase at the gas−liquid interface and negligible effects on the enzyme adsorption to the interface. After enzyme-catalyzed degradation, equimolar fatty acids and lyso PC were generated. The fatty acids together with the subphase Ca 2+ self-assembled into highly organized multilayer domains at the interface. The X-ray measurements unambiguously revealed that the densely packed PEG markedly hindered microphase separation and formation of the palmitic acid−Ca 2+ complexes.
Transplantable cell encapsulation systems present a promising approach to deliver a therapeutic solution from hormone-producing cells for the treatment of endocrine diseases like type 1 diabetes. However, the development of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.