Background: Cow’s milk allergy (CMA) is an important problem worldwide and the development of an in vivo system to study new immunotherapeutic strategies is of interest. Intolerance to soybean formula has been described in CMA patients, but it is not fully understood. In this work, we used a food allergy model in BALB/c mice to study the cross-reactivity between cow’s milk protein (CMP) and soy proteins (SP). Methods: Mice were orally sensitized with cholera toxin and CMP, and then challenged with CMP or SP to induce allergy. Elicited symptoms, plasma histamine, humoral and cellular immune response were analyzed. Th1- and Th2-associated cytokines and transcription factors were assessed at mucosal sites and in splenocytes. Cutaneous tests were also performed. Results: We found that the immediate symptoms elicited in CMP-sensitized mice orally challenged with SP were consistent with a plasma histamine increase. The serum levels of CMP-specific IgE and IgG1 antibodies were increased. These antibodies also recognized soy proteins. Splenocytes and mesenteric lymph node cells incubated with CMP or SP secreted IL-5 and IL-13. mRNA expression of Th2-associated genes (IL-5, IL-13, and GATA-3) was upregulated in mucosal samples. In addition, sensitized animals exhibited positive cutaneous tests after the injection of CMP or SP. Conclusions: We demonstrate that CMP-sensitized mice, without previous exposure to soy proteins, elicited hypersensitivity signs immediately after the oral administration of SP, suggesting that the immunochemical cross-reactivity might be clinically relevant. This model may provide an approach to further characterize cross-allergenicity phenomena and develop new immunotherapeutic treatments for allergic patients.
The induction of peripheral tolerance may constitute a disease-modifying treatment for allergic patients. We studied how oral immunotherapy (OIT) with milk proteins controlled allergy in sensitized mice (cholera toxin plus milk proteins) upon exposure to the allergen. Symptoms were alleviated, skin test was negativized, serum specific IgE and IgG1 were abrogated, a substantial reduction in the secretion of IL-5 and IL-13 by antigen-stimulated spleen cells was observed, while IL-13 gene expression in jejunum was down-regulated, and IL-10 and TGF-β were increased. In addition, we observed an induction of CD4+CD25+FoxP3+ cells and IL-10- and TGF-β-producing regulatory T cells in the lamina propria. Finally, transfer experiments confirmed the central role of these cells in tolerance induction. We demonstrated that the oral administration of milk proteins pre- or post-sensitization controlled the Th2-immune response through the elicitation of mucosal IL-10- and TGF-β-producing Tregs that inhibited hypersensitivity symptoms and the allergic response.
Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H extrusion to maintain cell viability. In this sense, many H transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.