Background: Cow’s milk allergy (CMA) is an important problem worldwide and the development of an in vivo system to study new immunotherapeutic strategies is of interest. Intolerance to soybean formula has been described in CMA patients, but it is not fully understood. In this work, we used a food allergy model in BALB/c mice to study the cross-reactivity between cow’s milk protein (CMP) and soy proteins (SP). Methods: Mice were orally sensitized with cholera toxin and CMP, and then challenged with CMP or SP to induce allergy. Elicited symptoms, plasma histamine, humoral and cellular immune response were analyzed. Th1- and Th2-associated cytokines and transcription factors were assessed at mucosal sites and in splenocytes. Cutaneous tests were also performed. Results: We found that the immediate symptoms elicited in CMP-sensitized mice orally challenged with SP were consistent with a plasma histamine increase. The serum levels of CMP-specific IgE and IgG1 antibodies were increased. These antibodies also recognized soy proteins. Splenocytes and mesenteric lymph node cells incubated with CMP or SP secreted IL-5 and IL-13. mRNA expression of Th2-associated genes (IL-5, IL-13, and GATA-3) was upregulated in mucosal samples. In addition, sensitized animals exhibited positive cutaneous tests after the injection of CMP or SP. Conclusions: We demonstrate that CMP-sensitized mice, without previous exposure to soy proteins, elicited hypersensitivity signs immediately after the oral administration of SP, suggesting that the immunochemical cross-reactivity might be clinically relevant. This model may provide an approach to further characterize cross-allergenicity phenomena and develop new immunotherapeutic treatments for allergic patients.
BackgroundInterleukin (IL)-17A and IL-17E (also known as IL-25) have been implicated in fibrosis in various tissues. However, the role of these cytokines in the development of intestinal strictures in Crohn’s disease (CD) has not been explored. We investigated the levels of IL-17A and IL-17E and their receptors in CD strictured and non-strictured gut, and the effects of IL-17A and IL-17E on CD myofibroblasts.ResultsIL-17A was significantly overexpressed in strictured compared with non-strictured CD tissues, whereas no significant difference was found in the expression of IL-17E or IL-17A and IL-17E receptors (IL-17RC and IL-17RB, respectively) in strictured and non-strictured CD areas. Strictured CD explants released significantly higher amounts of IL-17A than non-strictured explants, whereas no difference was found as for IL-17E, IL-6, or tumor necrosis factor-α production. IL-17A, but not IL-17E, significantly inhibited myofibroblast migration, and also significantly upregulated matrix metalloproteinase (MMP)-3, MMP-12, tissue inhibitor of metalloproteinase-1 and collagen production by myofibroblasts from strictured CD tissues.ConclusionsOur results suggest that IL-17A, but not IL-17E, is pro-fibrotic in CD. Further studies are needed to clarify whether the therapeutic blockade of IL-17A through the anti-IL-17A monoclonal antibody secukinumab is able to counteract the fibrogenic process in CD.
IL-13 has been implicated in the pathogenesis of ulcerative colitis (UC), and may have a role in animal models of gut fibrosis. We studied the involvement of IL-13 in inflammation and fibrosis in UC and Crohn's disease (CD). Intestinal biopsies and anti-CD3/CD28-or anti-CD2/CD28-stimulated lamina propria mononuclear cells from UC and CD patients and control subjects were cultured, and IL-13, IL-4, IL-5, IL-17A and IFN-γ production was measured. Mucosal IL-13-producing cells were characterised by flow cytometry. Gut explants from strictured CD, non-strictured CD and healthy donors were cultured ex vivo, and secreted IL-13, IL-1β and collagen were measured. IL-13 production by mucosal explants and activated lamina propria mononuclear cells did not differ between CD, UC and control subjects, and was at least a log lower than IFN-γ and IL-17A. IL-13-producing cells, and in particular natural killer T cells, were uniformly low in all groups. IL-4 and IL-5 were undetectable in culture supernatants. Explants of CD strictures produced low amounts of IL-13, whereas IL-1β and collagen were elevated. We could not confirm that UC or strictured CD are associated with elevated IL-13 production. These data suggest that an anti-IL-13 Ab would not be an appropriate therapeutic strategy in inflammatory bowel disease. Keywords:Crohn's disease r Fibrosis r T helper cell type 2 r Ulcerative colitis Additional supporting information may be found in the online version of this article at the publisher's web-site Correspondence: Prof. Thomas T. MacDonald e-mail: t.t.macdonald@qmul.ac.uk * These authors contributed equally to this manuscript.C 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2014. 44: 370-385 Cellular immune response 371 IntroductionCrohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel disorders thought to be caused by an abnormal immune response against the normal microbial flora [1]. Until recent years, intestinal lesions in CD were thought to be the end result of a T helper cell type (Th)1 response, with overproduction of . However, more recently, two novel subsets of CD4 + T cells, namely Th17 cells, which produce the proinflammatory cytokine IL-17A, and Th1/Th17 cells, which release both IFN-γ and IL-17A, have been identified [3,4]. IL-17A is overexpressed in both CD and UC mucosa, and an increased number of Th17 and Th1/Th17 cells has been found in the lamina propria of inflammatory bowel disease patients compared with controls, suggesting that, in addition to Th1 cells, Th17 responses may play an important role in the pathogenesis of both CD and UC [5][6][7]. As opposed to CD, mucosal inflammation in UC is thought to be driven by Th2 cytokines, such as IL-5 and IL-13 [2]. IL-13 is a pleiotropic cytokine with effects on many cell types, including macrophages, epithelial cells, smooth muscle cells and neurons [8]. IL-13, produced by Th2 cells and CD1d-restricted natural killer T (NKT) cells, has been implicated in the pathogenesis of an UC-like model of...
This work shows that although Raiden has fewer cross-reactive components than conventional soybean, it still has a residual cross-reactive component: the alpha-subunit beta-conglycinin. This reactivity might make this genotype unsuitable to treat CMA and also explains adverse reactions to soybean in CMA infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.