Objective:To investigate the associations between Parkinson’s disease and other degenerative parkinsonian syndromes and environmental factors in five European countries.Methods:A case–control study of 959 prevalent cases of parkinsonism (767 with Parkinson’s disease) and 1989 controls in Scotland, Italy, Sweden, Romania and Malta was carried out. Cases were defined using the United Kingdom Parkinson’s Disease Society Brain Bank criteria, and those with drug-induced or vascular parkinsonism or dementia were excluded. Subjects completed an interviewer-administered questionnaire about lifetime occupational and hobby exposure to solvents, pesticides, iron, copper and manganese. Lifetime and average annual exposures were estimated blind to disease status using a job-exposure matrix modified by subjective exposure modelling. Results were analysed using multiple logistic regression, adjusting for age, sex, country, tobacco use, ever knocked unconscious and family history of Parkinson’s disease.Results:Adjusted logistic regression analyses showed significantly increased odds ratios for Parkinson’s disease/parkinsonism with an exposure–response relationship for pesticides (low vs no exposure, odds ratio (OR) = 1.13, 95% CI 0.82 to 1.57, high vs no exposure, OR = 1.41, 95% CI 1.06 to 1.88) and ever knocked unconscious (once vs never, OR = 1.35, 95% CI 1.09 to 1.68, more than once vs never, OR = 2.53, 95% CI 1.78 to 3.59). Hypnotic, anxiolytic or antidepressant drug use for more than 1 year and a family history of Parkinson’s disease showed significantly increased odds ratios. Tobacco use was protective (OR = 0.50, 95% CI 0.42 to 0.60). Analyses confined to subjects with Parkinson’s disease gave similar results.Conclusions:The association of pesticide exposure with Parkinson’s disease suggests a causative role. Repeated traumatic loss of consciousness is associated with increased risk.
Single chain fragment (ScFv) antiidiotypic antibodies (antilds) of a killer toxin (KT) from the yeast Pichia anomala have been produced by recombinant DNA methodology from the splenic lymphocytes of mice immunized by idiotypic vaccination with a KT-neutralizing monoclonal antibody (Mab KT4). ScFv KT-like antilds (KTIdAb) react with specific Candida albicans KT cell wall receptors (KTR) exerting a candidacidal activity in vitro could be neutralized by adsorption with Mab KT4. ScFv KTIdAb displayed an effective therapeutic activity in an experimental model of rat candidal vaginitis.
Objectives:To investigate associations of Parkinson’s disease (PD) and parkinsonian syndromes with polymorphic genes that influence metabolism of either foreign chemical substances or dopamine and to seek evidence of gene-environment interaction effects that modify risk.Methods:A case-control study of 959 prevalent cases of parkinsonism (767 with PD) and 1989 controls across five European centres. Occupational hygienists estimated the average annual intensity of exposure to solvents, pesticides and metals, (iron, copper, manganese), blind to disease status.CYP2D6,PON1,GSTM1, GSTT1, GSTM3, GSTP1, NQO1, CYP1B1, MAO-A, MAO-B, SOD 2, EPHX,DAT1, DRD2andNAT2were genotyped. Results were analysed using multiple logistic regression adjusting for key confounders.Results:There was a modest but significant association betweenMAO-Apolymorphism in males and disease risk (G vs T, OR 1.30, 95% CI 1.02 to 1.66, adjusted). The majority of gene-environment analyses did not show significant interaction effects. There were possible interaction effects betweenGSTM1 nullgenotype and solvent exposure (which were stronger when limited to PD cases only).Conclusions:Many small studies have reported associations between genetic polymorphisms and PD. Fewer have examined gene-environment interactions. This large study was sufficiently powered to examine these aspects.GSTM1 nullsubjects heavily exposed to solvents appear to be at increased risk of PD. There was insufficient evidence that the other gene-environment combinations investigated modified disease risk, suggesting they contribute little to the burden of PD.
The role of the genetic polymorphism of NAD(P)H:quinone oxidoreductase (NQO1) and glutathione-S-transferase micro-1 (GSTM1) in the responsiveness to O(3)-induced acute effects was investigated in 24 healthy nonsmokers performing 2-h bike rides at ambient O(3) varying from 32 to 103 ppb. Before and after rides, each subject performed spirometric tests and provided a blood sample for the measurement of the Clara cell protein CC16. NQO1 and GSTM1 polymorphisms were characterized by polymerase chain reaction- based methods. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct was also measured in DNA of peripheral leukocytes. Rides at O(3) > 80 ppb resulted in significant decrements of pulmonary function tests and increased levels of serum CC16, consistent with mild impairment in respiratory function and increased lung epithelial permeability, respectively. Whereas NQO1wt and GSTM1null subjects showed both functional changes and increased serum CC16 after acute O(3) exposure, people with other haplotypes showed a rise in serum CC16 but no changes in lung function tests. In NQO1wt and GSTM1null subjects, partial correlation analysis showed that functional decrements and increased serum CC16 are closely associated with each other and with O(3) levels, whereas no such relationships were found among subjects bearing other haplotypes. An increased reaction rate between O(3) and hydroquinones would be consistent with the greater increase in 8-OHdG after O(3) exposure in this "susceptible" group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.