Keratinocyte-derived cytokines have been implicated in the pathogenesis of a number of skin diseases. In this study we examined the possible role of keratinocyte-derived cytokines in the development of acantholysis in pemphigus vulgaris. Nineteen patients with pemphigus vulgaris, demonstrating the characteristic clinical, pathologic, and immunopathologic findings were studied. In situ immunolabeling demonstrated the presence of two cytokines interleukin-1alpha and tumor necrosis factor-alpha, in lesional and perilesional areas. Results were confirmed by reverse transcriptase-polymerase chain reaction, demonstrating overexpression of both cytokines in vivo. To study the role of these cytokines in the pathogenesis of pemphigus vulgaris both in vitro and in vivo studies were performed. The results of the in vitro study demonstrated that pemphigus vulgaris IgG induced interleukin-1alpha and tumor necrosis factor-alpha mRNA in the skin. The potential pathogenic role of these mediators was demonstrated by a blocking study using antibodies against human interleukin-1alpha and tumor necrosis factor-alpha in keratinocytes cultures. A combination of anti-interleukin-1alpha and anti-tumor necrosis factor-alpha antibodies inhibited in vitro pemphigus vulgaris IgG induced acantholysis. To confirm the role of interleukin-1 and tumor necrosis factor-alpha in pemphigus, we utilized passive transfer studies using interleukin-1 deficient mice (ICE-/-, interleukin-1beta-/-) and tumor necrosis factor-alpha receptor deficient mice (TNFR1R2-/-). Both groups demonstrated a decreased susceptibility to the passive transfer of pemphigus. Our data support the role of cytokines interleukin-1 and tumor necrosis factor-alpha in the pathogenesis of pemphigus vulgaris.
The role of urokinase type plasminogen activator (uPA) has been well documented in the pathogenesis of pemphigus vulgaris (PV). Activation of plasminogen into active serine protease plasmin initiates extracellular proteolysis leading to acantholysis but the mechanisms underlying this process are not clearly understood. We have previously shown that keratinocyte derived cytokines IL-1alpha and TNF-alpha are involved in PV-induced acantholysis. In the present study we sought to examine whether keratinocyte-derived IL-1alpha and TNF-alpha are correlated with uPA induction in keratinocytes during acantholysis. Normal human keratinocytes were incubated with diluted PV serum. mRNAs for IL-1alpha, TNF-alpha and uPA were examined with RT-PCR at various time points and acantholysis was measured. IL-1alpha, TNF-alpha and uPA mRNAs were all induced in keratinocytes following PV serum stimulation; IL-1alpha/TNF-alpha mRNAs' expression was earlier than the expression of uPA mRNA. To further examine the role of IL-1alpha, TNF-alpha and uPA in acantholysis, we performed antibody blocking studies. Anti-IL-1alpha, anti-TNF-alpha and anti-uPA antibodies suppressed acantholysis by 76%, 80% and 90%, respectively. In addition, anti-IL-1alpha and anti-TNF-alpha antibodies inhibited uPA mRNA induction, whereas anti-uPA antibodies did not alter IL-1alpha/TNF-alpha mRNAs' expression. Our results confirm the role of uPA in acantholysis and suggest an involvement of IL-1alpha/TNF-alpha in uPA induction.
Langerhans cells are bone marrow derived dendritic cells that represent the major antigen-presenting cells in the skin. Langerhans cells take up and process antigen within the epidermis and present processed antigen to T lymphocyte in the regional lymph nodes and thus form an integral part of the cutaneous immune response. The cutaneous immune response can be modified by a number of pharmacologic agents, including corticosteroids, cyclosporine, and retinoids as well as physical agents, such as ultraviolet light. For the most part these agents act by suppressing immune function. A topical immune response modifier, imiquimod has been shown to enhance the cutaneous immune response. Imiquimod has anti-viral and anti-tumor effects in animal models and has been approved for the topical treatment of external genital and perianal warts in humans. The biologic activity of imiquimod in part is due to its effect as a cytokine inducer. Preliminary data suggested that imiquimod could have an effect on Langerhans cells. In order to clarify this effect on Langerhans cells, we examined Langerhans cell morphology and migration in imiquimod-treated skin. The density of Ia + cells decreased 2 d after treatment, falling to approximately 43% by day 10. The Ia positive in cells remaining in the skin appeared larger and more dendritic suggesting an activated state. ATPase staining of epidermal sheet confirmed the decreased number of Langerhans cells. To clarify status of Langerhans cells, the activation of B7 was examined. Activation of B7-1 or B7-2 was not detected. Imiquimod, however, did enhance Langerhans cell migration from skin to draining lymph nodes. This enhanced Langerhans cell migration was also associated with an enhanced allergic contact hypersensitivity. These results suggest that the mechanism of modulation of immune response by imiquimod is in part due to effects on Langerhans cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.