Recently, blink-related delta oscillations (delta BROs) have been observed in healthy subjects during spontaneous blinking at rest. Delta BROs have been linked with continuous gathering of information from the surrounding environment, which is classically attributed to the precuneus. Furthermore, fMRI studies have shown that precuneal activity is reduced or missing when consciousness is low or absent. We therefore hypothesized that the source of delta BROs in healthy subjects could be located in the precuneus and that delta BROs could be absent or reduced in patients with disorders of consciousness (DOC). To test these hypotheses, electroencephalographic (EEG) activity at rest was recorded in 12 healthy controls and nine patients with DOC (four vegetative states, and five minimally conscious states). Three-second-lasting EEG epochs centred on each blink instance were analyzed in both time- (BROs) and frequency domains (event-related spectral perturbation or ERSP and intertrial coherence or ITC). Cortical sources of the maximum blink-related delta power, corresponding to the positive peak of the delta BROs, were estimated by standardized Low Resolution Electromagnetic Tomography. In control subjects, as expected, the source of delta BROs was located in the precuneus, whereas in DOC patients, delta BROs were not recognizable and no precuneal localization was possible. Furthermore, we observed a direct relationship between spectral indexes and levels of cognitive functioning in all subjects participating in the study. This reinforces the hypothesis that delta BROs reflect neural processes linked with awareness of the self and of the environment.
Recently, the cortical source of blink-related delta oscillations (delta BROs) in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu), one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS) from minimally conscious state (MCS). In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL) underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD) of three bands of interest (low-alpha, high-alpha and low-beta) in the time-window of 50–550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network and thus are tendentially prone to respond to environmental stimuli, even though in an almost unintentional way.
Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.