Palaeosol-based correlations within the Late Pleistocene-Holocene alluvial succession along the Reno River, in the southern Po Plain, enabled the identification of depositional cycles falling in the sub-Milankovitch band. Each cycle, composed of overbank and fluvial facies capped by poorly to weakly developed palaeosols, is correlatable upstream to a single fluvial terrace in the Reno River valley and to an individual channel belt close to the valley outlet. Four cycles, dated to about 15-10 (c1), 10-5.5 (c2), 5.5-1.5 (c3) and <1.5 (c4) cal ky BP, respectively, were identified within the Ravenna subsynthem (AES8), an unconformity-bounded unit of the Geological Map of Italy to scale 1:50,000, corresponding to the post-Last Glacial Maximum deposits. This unit, typically wedge-shaped in coastal areas, where it consists of retrogradational (coastal plain and estuarine) deposits overlain by progradational (deltaic) facies, at the basin margin is a mud-dominated alluvial succession deposited atop laterally extensive fluvial-channel complexes. The base of AES8, correlatable to the transgressive surface identified in the coastal area, is a palaeosol dated to about 18-15 ky BP. The bounding surfaces of the high-frequency cycles are diachronous along the Reno longitudinal profile, and not necessary associated to remarkable lithological contrasts, but can be detected even in mud-dominated successions. Climate change likely exerted a major control in triggering alternating phases of river aggradation and degradation, with an increasing contribution of anthropogenic factors since the middle-late Holocene.Based on the correlation of 34 core logs and 33 well descriptions, with the aid of 71 radiocarbon dates, this study highlights to what extent palaeosols can represent powerful stratigraphic tools to identify cyclic patterns in alluvial successions, even at the millennial time scale.
Radiocarbon measurements by two 1220 Quantulus™ ultra low background liquid scintillation spectrometers were performed at the underground laboratory of Gran Sasso and the Radiocarbon Laboratory of E.N.E.A.-Bologna to study the efficiency and background variations related to measurement sites. The same configuration setup, i.e. the same center of gravity of the 14C spectrum (SQP(I) = 410 ± 1) was obtained in both instruments. Many different background and modern standards with pure analytical benzene were used and spectra for 40 one-hour periods were obtained. The data indicates a background reduction of approximately 65% between the surface and underground laboratories, with no differences in the efficiency. Recording similar efficiencies in both spectrometers is probably due to fairly identical photomultiplier characteristics. The cosmic noise reduction observed at the laboratory of Gran Sasso makes it possible to perform high precision 14C measurements and to extend for these idealized samples the present maximum dating limit from 58,000 BP to 62,000 BP (5 mL, 3 days counting).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.