AimIn this study, a not yet commercially available fully-automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), was validated for cervical cancer.Material and methodsTwenty-four mono-institutional consecutive treatment plans (50 Gy/25 fx) delivered between November 2019 and April 2022 were retrospectively selected. The automatic re-planning was performed by mCycle, implemented in the Monaco TPS research version (v5.59.13), in which the LO and Multicriterial Optimization (MCO) are coupled with Monte Carlo calculation. mCycle optimization follows an a priori assigned priority list, the so-called Wish List (WL), representing a dialogue between the radiation oncologist and the planner, setting hard constraints and following objectives. The WL was tuned on a patient subset according to the institution’s clinical protocol to obtain an optimal plan in a single optimization. This robust WL was then used to automatically re-plan the remaining patients. Manual plans (MP) and mCycle plans (mCP) were compared in terms of dose distributions, complexity (modulation complexity score, MCS), and delivery accuracy (perpendicular diode matrices, gamma analysis-passing ratio, PR). Their clinical acceptability was assessed through the blind choice of two radiation oncologists. Finally, a global quality score index (SI) was defined to gather into a single number the plan evaluation process.ResultsThe WL tuning requested four patients. The 20 automated re-planning tasks took three working days. The median optimization and calculation time can be estimated at 4 h and just over 1 h per MP and mCP, respectively. The dose comparison showed a comparable organ-at-risk spare. The planning target volume coverage increased (V95%: MP 98.0% [95.6–99.3]; mCP 99.2%[89.7–99.9], p >0.05). A significant increase has been registered in MCS (MP 0.29 [0.24–0.34]; mCP 0.26 [0.23–0.30], p <0.05) without affecting delivery accuracy (PR (3%/3mm): MP 97.0% [92.7–99.2]; mCP 97.1% [95.0–98.6], p >0.05). In the blind choice, all mCP results were clinically acceptable and chosen over MP in more than 75% of cases. The median SI score was 0.69 [0.41–0.84] and 0.73 [0.51–0.82] for MP and mCP, respectively (p >0.05).ConclusionsmCycle plans were comparable to clinical manual plans, more complex but accurately deliverable and registering a similar SI. Automated plans outperformed manual plans in blinded clinical choice.
BackgroundExtreme hypofractionation requires tight planning margins, high dose gradients, and strict adherence to planning criteria in terms of patient positioning and organ motion mitigation. This study reports the first clinical experience worldwide using a novel electromagnetic (EM) tracking device for intrafraction prostate motion management during dose-escalated linac-based stereotactic body radiation therapy (SBRT).MethodsThirteen patients with organ-confined prostate cancer underwent dose-escalated SBRT using flattening filter-free (FFF) volumetric modulated arc therapy (VMAT). The EM tracking device consisted of an integrated Foley catheter with a transmitter. Patients were simulated and treated with a filled bladder and an empty rectum. Setup accuracy was achieved by ConeBeam-CT (CBCT) matching, and motion was tracked during all the procedure. Treatment was interrupted when the signals exceeded a 2 mm threshold in any of the three spatial directions and, unless the offset was transient, target position was re-defined by repeating CBCT. Moreover, the displacements that would have occurred without any intrafraction organ motion management (i.e. no interruptions and repositionings) were simulated.ResultsIn 31 out of 56 monitored fractions (55%), no intervention was required to correct the target position. In 25 (45%) a correction was mandated, but only in 10 (18%), the beam delivery was interrupted. Total treatment time lasted on average 10.2 minutes, 6.7 minutes for setup, and 3.5 minutes for beam delivery. Without any intrafraction motion management, the overall mean treatment time and the mean delivery time would have been 6.9 minutes and 3.2 minutes, respectively. The prostate would have been found outside the tolerance in 8% of the total session time, in 4% of the time during the setup, and in 14% during the beam-on phase. Predominant motion pattern was posterior and its probability increased with time, with a mean motion ≤ 2 mm occurring within 10 minutes.ConclusionsEM real-time tracking was successfully implemented for intrafraction motion management during dose-escalated prostate SBRT. Results showed that most of the observed displacements were < 2 mm in any direction; however, there were a non-insignificant number of fractions with motion exceeding the predefined threshold, which would have otherwise gone undetected without intrafraction motion management.
The dosimetric impact of intrafraction prostate motion and interfraction anatomical changes and the effect of beam gating and motion correction were investigated in dose-escalated linac-based SBRT. Fifty-six gated fractions were delivered using a novel electromagnetic tracking device with a 2 mm threshold. Real-time prostate motion data were incorporated into the patient’s original plan with an isocenter shift method. Delivered dose distributions were obtained by recalculating these motion-encoded plans on deformed CTs reflecting the patient’s CBCT daily anatomy. Non-gated treatments were simulated using the prostate motion data assuming that no treatment interruptions have occurred. The mean relative dose differences between delivered and planned treatments were −3.0% [−18.5–2.8] for CTV D99% and −2.6% [−17.8–1.0] for PTV D95%. The median cumulative CTV coverage with 93% of the prescribed dose was satisfactory. Urethra sparing was slightly degraded, with the maximum dose increased by only 1.0% on average, and a mean reduction in the rectum and bladder doses was seen in almost all dose metrics. Intrafraction prostate motion marginally contributed in gated treatments, while in non-gated treatments, further deteriorations in the minimum target coverage and bladder dose metrics would have occurred on average. The implemented motion management strategy and the strict patient preparation regimen, along with other treatment optimization strategies, ensured no significant degradations of dose metrics in delivered treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.