We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ϵ|<10^{-5}. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning-shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10^{-6}-as well as opportunities for coupling to mechanical resonators.
Vanadium pentoxide materials prepared through sol-gel processes act as excellent intercalation hosts for lithium as well as polyvalent cations. A chemometric approach has been applied to study the X-ray absorption near-edge structure (XANES) evolution during in situ scanning of the Cu(0.1)V(2)O(5) xerogel/Li ions battery. Among the more common techniques, the fixed size windows evolving factor analysis (FSWEFA) permits the number of species involved in the experiment to be determined and the range of existence of each of them. This result, combined with the constraints of the invariance of the total concentration and non-negativity of both concentrations and spectra, enabled us to obtain the spectra of the pure components using a multivariate curve resolution refined by an alternate least squares fitting procedure. This allowed the normalized concentration profile to be understood. This data treatment evidenced the occurrence, for the first time, of three species during the battery charging. This fact finds confirmation by comparison of the pure spectra with the experimental ones. Extended X-ray absorption fine structure (EXAFS) analysis confirms the occurrence of three different chemical environments of Cu during battery charging.
An in situ X-ray absorption spectroscopy (XAS) spectroelectrochemical study of aquocobalamin (system B12a-B12r-B12s) has been carried out in aqueous solutions buffered at different pH values. To the best of our knowledge, this is the first structural study of aquocobalamin at room temperature under controlled oxidation conditions. Most of the previous work was in fact performed using frozen samples chemically treated to produce the species. The spectroelectrochemical approach offers several advantages: (1) the reduction products may be studied without poisoning the system with chemical reductive reagents and (2) any possible variation of the oxidation state owing to the electrons produced by the incident beam is avoided as the electrode, under potentiostatic control, acts as a scavenger. The spectroelectrochemical approach, together with more careful data analysis, has led to an improved interpretation of the XAS data. These conditions were not met in previous works where the oxidation state was not controlled and multiple scattering contributions were not taken into account. The general shape of the XAS spectra of the different species is not greatly affected by pH. A signature for the base-off square-planar coordination has been evidenced for the Co(II) compound at basic pH. A new signature for Co(I), indicating square-planar coordination, has been identified on the experimental spectra and simulated in theoretical X-ray absorption near-edge structure (XANES) studies. The flexibility of the electrochemical approach, that permits to unambiguously establish the formal oxidation state, has led to very reliable values for energy shift and peak intensity variations. The experimental XANES and extended X-ray absorption fine structure (EXAFS) spectra with a very good signal-to-noise ratio have been processed using the GNXAS package that takes into account multiple scattering contributions. EXAFS and XANES independent analysis result in the same structural model. The reduction from Co(III) to Co(II) produces the most significant structural changes: the cobalt coordination number decreases from six to five, and the edge position shifts by 2.4 +/- 0.3 eV. In addition, the XANES spectra are strongly modified. The reduction from Co(II) to Co(I) produces mainly electronic effects with no apparent change of the coordination number. A discussion of the limits and potentialities of EXAFS in this type of study has also been included.
Cobalt hexacyanoferrate (CoHCF) nanoparticles have been synthesized by mixing aqueous solutions of K3Fe(CN)6 and CoCl2 under vigorous stirring at different temperatures and following two different procedures, drop-by-drop or immediate mixing. The resulting CoHCF nanoparticles, with dimensions of several tens of nanometers, were characterized using TEM, SEM-EDX, IR, and XRD. Their electrochemical behavior was investigated in comparison with the CoHCF powder bulk compound. The CoHCF nanoparticles exhibit an electrochemically driven conversion to the bulk one that has been investigated by a chemometric approach in order to establish the best synthetic parameters. The rate and the degree of conversion depend on the synthesis temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.