urum wheat (DW), Triticum turgidum L. ssp. durum (Desf.) Husn., genome BBAA, is a cereal grain mainly used for pasta production and evolved from domesticated emmer wheat (DEW), T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell. DEW itself derived from wild emmer wheat (WEW), T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.
BackgroundIn this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding—after data editing—57000 polymorphic and informative SNPS, among which 54% were in genic regions.ResultsIn total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10−7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10−7) and for plant height on chromosome 6 (FDR = 0.011).ConclusionsWe demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.
BackgroundIn recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information.ResultsHere we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion.ConclusionsThis platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.
A rice GWAS panel of 281 accessions of japonica rice was phenotypically characterized for 26 traits related to phenology, plant and seed morphology, physiology and yield for 2 years in field conditions under permanent flooding (PF) and limited water (LW). A genome-wide analysis uncovered a total of 160 significant marker-trait associations (MTAs), of which 32 were LW-specific, 59 were PF-specific, and 69 were in common between the two water management systems. LW-specific associations were identified for several agronomic traits including days to maturation, days from flowering to maturation, leaf traits, plant height, panicle and seed traits, hundred grain weight, yield and tillering. Significant MTAs were detected across all the 12 rice chromosomes, while clusters of effects influencing different traits under LW or in both watering conditions were, respectively, observed on chromosomes 4, 8, and 12 and on chromosomes 1, 3, 4, 5, and 8. The analysis of genes annotated in the Nipponbare reference sequence and included in the regions associated to traits related to plant morphology, grain yield, and physiological parameters allowed the identification of genes that were demonstrated to affect the respective traits. Among these, three (OsOFP2, Dlf1, OsMADS56) and seven (SUI1, Sd1, OsCOL4, Nal1, OsphyB, GW5, Ehd1) candidate genes were, respectively, identified to co-localize with LW-specific associations and associations in common between the two water treatments. For several LW-specific MTAs, or in common among the two treatments, positional co-localizations with previously identified QTLs for rice adaptation to water shortages were observed, a result that further supports the role of the loci identified in this work in conferring adaptation to LW. The most robust associations identified here could represent suitable targets for genomic selection approaches to improve yield-related traits under LW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.