Circulating endothelial cells (CEC) and their progenitors (EPC) are restricted subpopulations of peripheral blood (PB), cord blood (CB), and bone marrow (BM) cells, involved in the endothelial homeostasis maintenance. Both CEC and EPC are thought to represent potential biomarkers in several clinical conditions involving endothelial turnover/remodeling. Although different flow cytometry methods for CEC and EPC characterization have been published so far, none of them have reached consistent conclusions, therefore consensus guidelines with respect to CEC and EPC identification and quantification need to be established. Here, we have carried out an in depth investigation of CEC and EPC phenotypes in healthy PB, CB and BM samples, by optimizing a reliable polychromatic flow cytometry (PFC) panel. Results showed that the brightness of CD34 expression on healthy PB and CB circulating cells represents a key benchmark for the identification of CEC (CD45neg/CD34bright/CD146pos) respect to the hematopoietic stem cell (HSC) compartment (CD45dim/CD34pos/CD146neg). This approach, combined with a dual-platform counting technique, allowed a sharp CEC enumeration in healthy PB (n 5 38), and resulting in consistent CEC counts with previously reported data (median 5 11.7 cells/ml). In parallel, by using rigorous PFC conditions, CD34pos/CD45dim/CD133pos/VEGFR2pos EPC were not found in any healthy PB or CB sample, since VEGFR2 expression was never detectable on the surface of CD34pos/CD45dim/CD133pos cells. Notably, the putative EPC phenotype was observed in all analyzed BM samples (n 5 12), and the expression of CD146 and VEGFR2, on BM cells, was not restricted to the CD34bright compartment, but also appeared on the HSC surface. Altogether, our findings suggest that the previously reported EPC antigen profile, defined by the simultaneous expression of VEGFR2 and CD133 on the surface of CD45dim/CD34pos cells, should be carefully re-evaluated and further studies should be conducted to redefine EPC features in order to translate CEC and EPC characterization into clinical practice. V C 2015 International Society for Advancement of Cytometry
Circulating endothelial cells (CEC) represent a restricted peripheral blood (PB) cell subpopulation with high potential diagnostic value in many endothelium-involving diseases. However, whereas the interest in CEC studies has grown, the standardization level of their detection has not. Here, we undertook the task to align CEC phenotypes and counts, by standardizing a novel flow cytometry approach, within a network of six laboratories. CEC were identified as alive/nucleated/CD45negative/CD34bright/CD146positive events and enumerated in 269 healthy PB samples. Standardization was demonstrated by the achievement of low inter-laboratory Coefficients of Variation (CVL), calculated on the basis of Median Fluorescence Intensity values of the most stable antigens that allowed CEC identification and count (CVL of CD34bright on CEC ~ 30%; CVL of CD45 on Lymphocytes ~ 20%). By aggregating data acquired from all sites, CEC numbers in the healthy population were captured (medianfemale = 9.31 CEC/mL; medianmale = 11.55 CEC/mL). CEC count biological variability and method specificity were finally assessed. Results, obtained on a large population of donors, demonstrate that the established procedure might be adopted as standardized method for CEC analysis in clinical and in research settings, providing a CEC physiological baseline range, useful as starting point for their clinical monitoring in endothelial dysfunctions.
Cyt-FU-IL-2 can be considered safe, feasible and moderately active in heavily pre-treated pts. Plt, Plt/Ly, CD8/Treg and a transient Tregs reduction were observed without significative difference on survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.