A gas diffusion layer (GDL) in a Polymer Fuel Cell (PEMFC) has several important functionalities such as water management, uniform transport of reactant gases, gas permeability, mechanical support and compressibility, electrical and thermal conductivity both in-plane and through-plane. All these requirements are best met by carbon fiber-based materials such as carbon fiber paper, or simply a felt-like material or woven carbon fabrics. In this work, the attention is focused on a new series of GDL materials which were realized by an Italian industry, SAATIgroup. In particular, the attention was focused on two different surface treatments in order to make the GDLs samples hydrophobic. Three different kinds of samples were tested: a first sample with a coating of PTFE, a second sample with a plasma treatment and the third one without any surface treatment.
The world is once again facing massive energy- and environmental challenges, caused by global warming. This time, the situation is complicated by the increase in energy demand after the pandemic years, and the dramatic lack of basic energy supply. The purely “green” energy is still not ready to substitute the fossil energy, but this year the fossil supplies are heavily questioned. Consequently, engineering must take flexible, adaptive, unexpected directions. For example, even the natural gas power plants are currently considered “green” by the European Union Taxonomy, joining the “green” hydrogen. Through a tight integration of highly intermittent renewable, or other distributed energy resources, the microgrid is the technology of choice to guarantee the expected impacts, making clean energy affordable. The focus of this work lies in the techno-economic optimization analysis of Combined Heat and Power (CHP) Multi-Micro Grids (MMG), a novel distribution system architecture comprising two interconnected hybrid microgrids. High computational resources are needed to investigate the CHP-MMG. To this aim, a novel nature-inspired two-layer optimization-simulation algorithm is discussed. The proposed algorithm is used to execute a techno-economic analysis and find the best settings while the energy balance is achieved at minimum operational costs and highest revenues. At a lower level, inside the algorithm, a Sequential Least Squares Programming (SLSQP) method ensures that the stochastic generation and consumption of energy deriving from CHP-MMG trial settings are balanced at each time-step. At the upper level, a novel multi-objective self-adaptive evolutionary algorithm is discussed. This upper level is searching for the best design, sizing, siting, and setting, which guarantees the highest internal rate of return (IRR) and the lowest Levelized Cost of Energy (LCOE). The Artificial Immune Evolutionary (AIE) algorithm imitates how the immune system fights harmful viruses that enter the body. The optimization method is used for sensitivity analysis of hydrogen costs in off-grid and on-grid highly perturbed contexts. It has been observed that the best CHP-MMG settings are those that promote a tight thermal and electrical energy balance between interconnected microgrids. The results demonstrate that such mechanism of energy swarm can keep the LCOE lower than 15 c€/kWh and IRR of over 55%.
This paper presents a techno-economic model of two interconnected hybrid microgrids (MGs) whose electricity and thermal dispatch strategy are managed with Sequential Least Squares Programming (SLSQP) optimization technique. MGs combine multiple thermal and electric power generation, transmission, and distribution systems as a whole, to gain a tight integration of weather-dependent distributed renewable generators with multiple stochastic load profiles. Moreover MGs allow to achieve an improvement in the return of investment and better cost of energy. The first part of the work deals with a method to obtain an accurate prediction of climate variables. This method makes use of Fast Fourier Transform (FFT) and polynomial regression to manipulate climate datasets issued by the European Centre for Medium-Range Weather Forecasts (ECMWF). The second part of the work is focused on the optimization of interconnected MGs operations through the SLSQP algorithm. The objective is to obtain the best financial performance (IRR) when clean distributed energy resources (DERs) are exchanging both thermal and electric energy. SLSQP optimizes the energy flows by balancing their contribution with their nominal Levelized Cost of Energy (LCOE). The proposed algorithm is used to simulate innovative business scenarios where revenue streams are generated via sales of energy to end users, sell backs and deliveries of demand response services to the other grids. A business case dealing with two MGs providing clean thermal and electric energies to household communities nearby the city of Bremen (Germany) is examined in the last part of the work. This business case with a payback in two years, an internal rate of return (IRR) at 65% and a LCOE at 0.14 €/kWh, demonstrates how the interconnection of multiple hybrid MGs with SLSQP optimization techniques, makes renewable and DERs outcompeting and could strand investments in fossil fuel generation, shaping the future of clean energy markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.