Background
Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients.
Methods
A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival.
Results
In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6–24.0, P = 0.52) and 22.4% (97.5% CI: 17.2–28.3, P < 0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline.
Conclusions
Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline.
Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).
The epidemic phase of Coronavirus disease 2019 (COVID-19) made the Worldwide health system struggle against a severe interstitial pneumonia requiring high-intensity care settings for respiratory failure. A rationalisation of resources and a specific treatment path were necessary. The study suggests a predictive model drawing on clinical data gathered by 119 consecutive patients with laboratory-confirmed COVID-19 admitted in Busto Arsizio hospital. We derived a score that identifies the risk of clinical evolution and in-hospital mortality clustering patients into four groups. The study outcomes have been compared across the derivation and validation samples. The prediction rule is based on eight simple patient characteristics that were independently associated with study outcomes. It is able to stratify COVID-19 patients into four severity classes, with in-hospital mortality rates of 0% in group 1, 6–12.5% in group 2, 7–20% in group 3 and 60–86% in group 4 across the derivation and validation sample. The prediction model derived in this study identifies COVID-19 patients with low risk of in-hospital mortality and ICU admission. The prediction model that the study presents identifies COVID-19 patients with low risk of in-hospital mortality and admission to ICU. Moreover, it establishes an intermediate portion of patients that should be treated accurately in order to avoid an unfavourable clinical evolution. A further validation of the model is important before its implementation as a decision-making tool to guide the initial management of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.