Inositol-requiring enzyme 1[α] (IRE1[α])–X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α–XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α–XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α–XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.
SUMMARY
Natural killer (NK) cells are cytotoxic lymphocytes capable of rapid cytotoxicity, cytokine secretion, and clonal expansion. To sustain such energetically demanding processes, NK cells must increase their metabolic capacity upon activation. However, little is known about the metabolic requirements specific to NK cells
in vivo
. To gain greater insight, we investigated the role of aerobic glycolysis in NK cell function and demonstrate that their glycolytic rate increases rapidly following viral infection and inflammation, prior to that of CD8
+
T cells. NK cell-specific deletion of lactate dehydrogenase A (LDHA) reveals that activated NK cells rely on this enzyme for both effector function and clonal proliferation, with the latter being shared with T cells. As a result, LDHA-deficient NK cells are defective in their anti-viral and anti-tumor protection. These findings suggest that aerobic glycolysis is a hallmark of NK cell activation that is key to their function.
Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer (OvCa). While LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type-I interferon (IFN) responses in OvCa. Ablation of the LPA-generating enzyme autotaxin in OvCa cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type-I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type-I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in OvCa patients. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type-I IFN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.