The well-known Kirschner-Panetta model for Tumour-Immune System interplay [Kirschner and Panetta, J. Math. Biol 37 (3), 1998] reproduces a number of features of this essential interaction, but it excludes the possibility of tumour suppression by the immune system in the absence of therapy. Here we present a hybrid-stochastic version of that model. In this new framework, we show that in reality the model is also able to reproduce the suppression, through stochastic extinction after the first spike of an oscillation.
We have measured the neutron capture cross sections of the stable magnesium isotopes 24,25,26 Mg in the energy range of interest to the s process using the neutron time-of-flight facility n_TOF at CERN. Capture events from a natural metal sample and from samples enriched in 25 Mg and 26 Mg were recorded using the total energy method based on C 6 2 H 6 detectors. Neutron resonance parameters were extracted by a simultaneous resonance shape analysis of the present capture data and existing transmission data on a natural isotopic sample. Maxwellian-averaged capture cross sections for the three isotopes were calculated up to thermal energies of 100 keV and their impact on s-process analyses was investigated. At 30 keV the new values of the stellar cross section for 24 Mg, 25 Mg, and 26 Mg are 3.8±0.2 mb, 4.1±0.6 mb, and 0.14±0.01 mb, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.