Abstract:A procedure for the characterization of the temporal evolution of river morphology is presented. Wet and active river channels are obtained from the processing of imagery datasets. Information about channel widths and active channel surface subdivision in water, vegetation and gravel coverage classes are evaluated along with channel centerline lengths and sinuosity indices. The analysis is carried out on a series of optical remotely-sensed imagery acquired by different satellite missions during the time period between 1968 and 2017. Data from the CORONA, LANDSAT and Sentinel-2 missions were considered. Besides satellite imagery, a digital elevation model and aerial ortho-photos were also used. The procedure was applied to three, highly dynamic, Albanian rivers: Shkumbin, Seman and Vjosë, showing a high potential for application in contexts with limitations in ground data availability. The results of the procedure were assessed against reference data produced by means of expert interpretation of a reference set of river reaches. The results differ from reference values by just a few percentage points (<6%). The time evolution of hydromorphological parameters is well characterized, and the results support the design of future studies aimed at the understanding of the relations between climatic and anthropogenic controls and the response of river morphological trajectories. Moreover, the high spatial and temporal resolution of the Sentinel-2 mission motivates the development of an automatic monitoring system based on a rolling application of the defined procedure.
In the present work, synthetic cyclohexa- and cycloheptapeptides previously singled out by a combinatorial chemistry approach have been evaluated as chiral selectors in capillary electrophoresis. By applying the countercurrent migration technique and employing a new adsorbed coating, a series of dinitrophenyl amino acids as well as some chiral compounds of pharmaceutical interest have been evaluated for enantiorecognition. The results thus obtained led to a deeper investigation of the chiral discrimination process, by carrying out nuclear magnetic resonance (NMR) studies on selected cyclopeptide-analyte complexes. These studies shed light on the chemical groups involved in the analyte-selector interaction and provided useful information for a wider application of these cyclopeptides in the separation of other drug enantiomers.
The wide-spread use of the anti-complement component 5 monoclonal antibody (moAb) eculizumab has greatly reduced the incidence of relapsing atypical hemolytic uremic syndrome (aHUS) after kidney transplantation (KT). However, the optimal management of aHUS transplant candidates with anti-Complement Factor H (CFH) antibodies remains debated. In these patients, the benefits of chronic eculizumab administration should be weighed against the risk of fatal infections, repeated hospital admissions, and excessive costs. We report the case of a 45-year-old female patient with CFHR1/CFHR3 homozygous deletion-associated aHUS who underwent deceased-donor KT despite persistently elevated anti-CFH antibody titers. As induction and aHUS prophylaxis, she received a combination of eculizumab and obinutuzumab, a humanized type 2 anti-CD20 moAb. The post-operative course was uneventful. After 1-year of follow-up, she is doing well with excellent allograft function, undetectable anti-CFH antibodies, sustained B-cell depletion, and no signs of aHUS activity. A brief review summarizing current literature on the topic is also included. Although anecdotal, our experience suggests that peri-operative obinutuzumab administration can block anti-CFH antibodies production safely and effectively, thus ensuring long-lasting protection from post-transplant aHUS relapse, at a reasonable cost. For the first time, we have demonstrated in vivo that obinutuzumab B-cell depleting properties are not significantly affected by eculizumab-induced complement inhibition.
IntroductionHigh serum levels of fibroblast growth factor 23 (FGF23) characterize chronic kidney disease (CKD) since its early stages and have been suggested to contribute to inflammation and cardiovascular disease. However, the mechanisms linking FGF23 with these pathological conditions remain still incompletely defined. The alpha-2-HS-glycoprotein (AHSG), a liver-produced anti-inflammatory cytokine, is highly modulated by inflammation itself, also through the TNFα/NFκB signaling pathway. In our previous study, we found that FGF23 modulates the production of AHSG in the liver in a bimodal way, with stimulation and inhibition at moderately and highly increased FGF23 concentrations, respectively.MethodsThe present study, aiming to gain further insights into this bimodal behavior, was performed in hepatocyte human cells line (HepG2), using the following methods: immunochemistry, western blot, chromatin immunoprecipitation, fluorescence in situ hybridization (FISH), qRT-PCR, and gene SANGER sequencing.ResultsWe found that FGF23 at 400 pg/ml activates nuclear translocation of NFκB, possibly increasing AHSG transcription. At variance, at 1,200 pg/ml, FGF23 inactivates NFκB through the activation of two specific NFκB inhibitors (IκBα and NKIRAS2) and induces its detachment from the AHSG promoter, reducing AHSG transcription.ConclusionThese results add another piece to the puzzle of FGF23 involvement in the multifold interactions between CKD, inflammation, and cardiovascular disease, suggesting the involvement of the NFκB pathway, which might represent a potential therapeutic target in CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.