Inexact (or approximate) computing is an attractive paradigm for digital processing at nanometric scales. Inexact computing is particularly interesting for computer arithmetic designs. This paper deals with the analysis and design of two new approximate 4-2 compressors for utilization in a multiplier. These designs rely on different features of compression, such that imprecision in computation (as measured by the error rate and the so-called normalized error distance) can meet with respect to circuit-based figures of merit of a design (number of transistors, delay and power consumption). Four different schemes for utilizing the proposed approximate compressors are proposed and analyzed for a Dadda multiplier. Extensive simulation results are provided and an application of the approximate multipliers to image processing is presented. The results show that the proposed designs accomplish significant reductions in power dissipation, delay and transistor count compared to an exact design; moreover, two of the proposed multiplier designs provide excellent capabilities for image multiplication with respect to average normalized error distance and peak signal-to-noise ratio (more than 50dB for the considered image examples).
Modern Computer Arithmetic focuses on arbitrary-precision algorithms for efficiently performing arithmetic operations such as addition, multiplication and division, and their connections to topics such as modular arithmetic, greatest common divisors, the Fast Fourier Transform (FFT), and the computation of elementary and special functions. Brent and Zimmermann present algorithms that are ready to implement in your favourite language, while keeping a high-level description and avoiding too low-level or machine-dependent details. The book is intended for anyone interested in the design and implementation of efficient high-precision algorithms for computer arithmetic, and more generally efficient multiple-precision numerical algorithms. It may also be used in a graduate course in mathematics or computer science, for which exercises are included. These vary considerably in difficulty, from easy to small research projects, and expand on topics discussed in the text. Solutions to selected exercises are available from the authors.
In this work, the designs of both non-iterative and iterative approximate logarithmic multipliers (LMs) are studied to further reduce power consumption and improve performance. Non-iterative approximate LMs (ALMs) that use three inexact mantissa adders, are presented. The proposed iterative approximate logarithmic multipliers (IALMs) use a set-one adder in both mantissa adders during an iteration; they also use lower-part-or adders and approximate mirror adders for the final addition. Error analysis and simulation results are also provided; it is found that the proposed approximate LMs with an appropriate number of inexact bits achieve a higher accuracy and lower power consumption than conventional LMs using exact units. Compared with conventional LMs with exact units, the normalized mean error distance (NMED) of 16-bit approximate LMs is decreased by up to 18% and the power-delay product (PDP) has a reduction of up to 37%. The proposed approximate LMs are also compared with previous approximate multipliers; it is found that the proposed approximate LMs are best suitable for applications allowing larger errors, but requiring lower energy consumption and low power. Approximate Booth multipliers fit applications with less stringent power requirements, but also requiring smaller errors. Case studies for error-tolerant computing applications are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.