Developing a suggestion by Russell, Prawitz showed how the usual natural deduction inference rules for disjunction, conjunction and absurdity can be derived using those for implication and the second order quantifier in propositional intuitionistic second order logic NI 2 . It is however well known that the translation does not preserve the relations of identity among derivations induced by the permutative conversions and immediate expansions for the definable connectives, at least when the equational theory of NI 2 is assumed to consist only of β and η equations. On the basis of the categorial interpretation of NI 2 , we introduce a new class of equations expressing what in categorial terms is a naturality condition satisfied by the transformations interpreting NI 2 -derivations. We show that the Russell-Prawitz translation does preserve identity of proof with respect to the enriched system by highlighting the fact that naturality corresponds to a generalized permutation principle. We show that these result generalize some facts which have gone so far unnoticed, namely that the Russell-Prawitz translation maps particular classes of instances of the equations governing disjunction (and the other definable connectives) onto equations which are already included in the βη-equational theory of NI 2 . Finally, we compare our approach with the one proposed by Ferreira and Ferreira and show that the naturality condition suggests a generalization of their methods to a wider class of formulas.
We study the logic obtained by endowing the language of first-order arithmetic with second-order measure quantifiers. This new kind of quantification allows us to express that the argument formula is true in a certain portion of all possible interpretations of the quantified variable. We show that first-order arithmetic with measure quantifiers is capable of formalizing simple results from probability theory and, most importantly, of representing every recursive random function. Moreover, we introduce a realizability interpretation of this logic in which programs have access to an oracle from the Cantor space.
Abstract. We present an algebraic view on logic programming, related to proof theory and more specifically linear logic and geometry of interaction. Within this construction, a characterization of logspace (deterministic and non-deterministic) computation is given via a synctactic restriction, using an encoding of words that derives from proof theory. We show that the acceptance of a word by an observation (the counterpart of a program in the encoding) can be decided within logarithmic space, by reducing this problem to the acyclicity of a graph. We show moreover that observations are as expressive as two-ways multi-heads finite automata, a kind of pointer machines that is a standard model of logarithmic space computation.
Generalized metrics, arising from Lawvere's view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.
The investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity (or impredicativity) of second and higher order logic. However, the epistemological significance of such investigations, and of their often non trivial results, has not received much attention in the contemporary foundational debate.The results recalled in this paper suggest that the question of the circularity of second order logic cannot be reduced to the simple assessment of a vicious circle. Through a comparison between the faulty consistency arguments given by Frege and Martin-Löf, respectively for the logical system of the Grundgesetze (shown inconsistent by Russell's paradox) and for the intuitionistic type theory with a type of all types (shown inconsistent by Girard's paradox), and the normalization argument for second order type theory (or System F), we indicate a bunch of subtle mathematical problems and sophisticated logical concepts hidden behind the hazardous idea of impredicative quantification, constituting a vast (and largely unexplored) domain for foundational research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.