Developing a suggestion by Russell, Prawitz showed how the usual natural deduction inference rules for disjunction, conjunction and absurdity can be derived using those for implication and the second order quantifier in propositional intuitionistic second order logic NI 2 . It is however well known that the translation does not preserve the relations of identity among derivations induced by the permutative conversions and immediate expansions for the definable connectives, at least when the equational theory of NI 2 is assumed to consist only of β and η equations. On the basis of the categorial interpretation of NI 2 , we introduce a new class of equations expressing what in categorial terms is a naturality condition satisfied by the transformations interpreting NI 2 -derivations. We show that the Russell-Prawitz translation does preserve identity of proof with respect to the enriched system by highlighting the fact that naturality corresponds to a generalized permutation principle. We show that these result generalize some facts which have gone so far unnoticed, namely that the Russell-Prawitz translation maps particular classes of instances of the equations governing disjunction (and the other definable connectives) onto equations which are already included in the βη-equational theory of NI 2 . Finally, we compare our approach with the one proposed by Ferreira and Ferreira and show that the naturality condition suggests a generalization of their methods to a wider class of formulas.
In this paper we show how Dummett-Prawitz-style proof-theoretic semantics has to be modified in order to cope with paradoxical phenomena. It will turn out that one of its basic tenets has to be given up, namely the definition of the correctness of an inference as validity preservation. As a result, the notions of an argument being valid and of an argument being constituted by correct inference rules will no more coincide. The gap between the two notions is accounted for by introducing the distinction between sense and denotation in the proof-theoretic-semantic setting.
In this paper we argue that an account of proof-theoretic harmony based on reductions and expansions delivers an inferentialist picture of meaning which should be regarded as intensional, as opposed to other approaches to harmony that will be dubbed extensional. We show how the intensional account applies to any connective whose rules obey the inversion principle first proposed by Prawitz and Schroeder-Heister. In particular, by improving previous formulations of expansions, we solve a problem with quantum-disjunction first posed by Dummett. As recently observed by SchroederHeister, however, the specification of an inversion principle cannot yield an exhaustive account of harmony. The reason is that there are more collections of elimination rules than just the one obtained by inversion which we are willing to acknowledge as being in harmony with a given collection of introduction rules. Several authors more or less implicitly suggest that what is common to all alternative harmonious collection of rules is their being interderivable with each other. On the basis of considerations about identity of proofs and formula isomorphism, we show that this is too weak a condition for a given collection of elimination rules to be in harmony with a collection of introduction rules, at least if the intensional picture of meaning we advocate is not to collapse on an extensional one.
Substructural approaches to paradoxes have attracted much attention from the philosophical community in the last decade. In this paper we focus on two substructural logics, named ST and TS, along with two structural cousins, LP and K3. It is well known that LP and K3 are duals in the sense that an inference is valid in one logic just in case the contrapositive is valid in the other logic. As a consequence of this duality, theories based on either logic are tightly connected since many of the arguments for and objections against one theory reappear in the other theory in dual form. The target of the paper is making explicit in exactly what way, if any, ST and TS are dual to one another. The connection will allow us to gain a more fine-grained understanding of these logics and of the theories based on them. In particular, we will obtain new insights on two questions concerning ST which are being intensively discussed in the current literature: whether ST preserves classical logic and whether it is LP in sheep's clothing. Explaining in what way ST and TS are duals requires comparing these logics at a metainferential level. We provide to this end a uniform proof theory to decide on valid metainferences for each of the four logics. This proof procedure allows us to show in a very simple way how different properties of inferences (unsatisfiability, supersatisfiability and antivalidity) that behave in very different ways for each logic can be captured in terms of the validity of a metainference.Substructural approaches to paradox − Non-transitive logic − Non-reflexive logic − Strong Kleene
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.