The study of the facility location problem in the presence of self-interested agents has recently emerged as the benchmark problem in the research on mechanism design without money. In the setting studied in the literature so far, agents are single-parameter in that their type is a single number encoding their position on a real line. We here initiate a more realistic model for several real-life scenarios. Specifically, we propose and analyze heterogeneous facility location without money, a novel model wherein: (i) we have multiple heterogeneous (i.e., serving different purposes) facilities, (ii) agents' locations are disclosed to the mechanism and (iii) agents bid for the set of facilities they are interested in (as opposed to bidding for their position on the network). We study the heterogeneous facility location problem under two different objective functions, namely: social cost (i.e., sum of all agents' costs) and maximum cost. For either objective function, we study the approximation ratio of both deterministic and randomized truthful algorithms under the simplifying assumption that the underlying network topology is a line. For the social cost objective function, we devise an (n − 1)-approximate deterministic truthful mechanism and prove a constant approximation lower bound. Furthermore, we devise an optimal and truthful (in expectation) randomized algorithm. As regards the maximum cost objective function, we propose a 3-approximate deterministic strategyproof algorithm, and prove a 3/2 approximation lower bound for deterministic strategyproof mechanisms. Furthermore, we propose a 3/2-approximate randomized strategyproof algorithm and prove a 4/3 approximation lower bound for randomized strategyproof algorithms.
We study the strategic implications that arise from adding one extra option to the miners participating in the bitcoin protocol. We propose that when adding a block, miners also have the ability to pay forward an amount to be collected by the first miner who successfully extends their branch, giving them the power to influence the incentives for mining. We formulate a stochastic game for the study of such incentives and show that with this added option, smaller miners can guarantee that the best response of even substantially more powerful miners is to follow the expected behavior intended by the protocol designer.
Nowadays, massive data sets of graph-like data arise in various application domains ranging from bioinformatics to social networks and communication networks analysis. The abundance of such kind of data calls for innovative techniques for storing, managing and processing graph-like data. In order to fulfill these requirements, in this paper we propose: (i) a model for representing compressed weighted graphs, and (ii) an efficient and effective compression algorithm which, leveraging on modular decomposition theory, is capable of exploiting structural properties of graphs in order to obtain highly compact and accurate compressed representations. Such compressed graphs can be used in place of the original graphs in order to enhance the performance of graph clustering algorithms in all contexts where a little inaccuracy in the results is acceptable in order to gain computational efficiency. The paper is completed by an experimental study which shows the effectiveness of the proposed approach in the context of graph clustering.
Efficiently supporting advanced OLAP visualization of multidimensional data cubes is a novel and challenging research topic, which results to be of interest for a large family of data warehouse applications relying on the management of spatio-temporal (e.g., mobile) data, scientific and statistical data, sensor network data, biological data, etc. On the other hand, the issue of visualizing multidimensional data domains has been quite neglected from the research community, since it does not belong to the well-founded conceptual-logical-physical design hierarchy inherited from relational database methodologies. Inspired from these considerations, in this article we propose an innovative advanced OLAP visualization technique that meaningfully combines (i) the so-called OLAP dimension flattening process, which allows us to extract two-dimensional OLAP views from multidimensional data cubes, and (ii) very efficient data compression techniques for such views, which allow us to generate "semantics-aware" compressed representations where data are grouped along OLAP hierarchies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.