Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.
Polynucleotide phosphorylase (PNPase, polyribonucleotide nucleotidyltransferase, EC 2.7.7.8) is one of the cold shock‐induced proteins in Escherichia coli and pnp, the gene encoding it, is essential for growth at low temperatures. We have analysed the expression of pnp upon cold shock and found a dramatic transient variation of pnp transcription profile: within the first hour after temperature downshift the amount of pnp transcripts detectable by Northern blotting increased more than 10‐fold and new mRNA species that cover pnp and the downstream region, including the cold shock gene deaD, appeared; 2 h after temperature downshift the transcription profile reverted to a preshift‐like pattern in a PNPase‐independent manner. The higher amount of pnp transcripts appeared to be mainly due to an increased stability of the RNAs. The abundance of pnp transcripts was not paralleled by comparable variation of the protein: PNPase steadily increased about twofold during the first 3 h at low temperature, as determined both by Western blotting and enzymatic activity assay, suggesting that PNPase, unlike other known cold shock proteins, is not efficiently translated in the acclimation phase. In experiments aimed at assessing the role of PNPase in autogenous control during cold shock, we detected a Rho‐dependent termination site within pnp. In the cold acclimation phase, termination at this site depended upon the presence of PNPase, suggesting that during cold shock pnp is autogenously regulated at the level of transcription elongation.
Oligomerization in the heat shock protein (Hsp) 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of nanoelectrospray ionization mass spectrometry, optical spectroscopy and quantitative size exclusion chromatography. Our results show that Hsp70 oligomerization takes place through a specific interaction between the interdomain linker of one molecule and the substrate-binding domain of a different molecule, generating dimers and higher-order oligomers. We have found that substrate binding shifts the oligomerization equilibrium towards the accumulation of functional monomeric protein, probably by sequestering the helical lid sub-domain needed to stabilize the chaperone: substrate complex. Taken together, these findings suggest a possible role of chaperone oligomerization as a mechanism for regulating the availability of the active monomeric form of the chaperone and for the control of substrate binding and release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.