According to general relativity, photons are deflected and delayed by the curvature of space-time produced by any mass. The bending and delay are proportional to gamma + 1, where the parameter gamma is unity in general relativity but zero in the newtonian model of gravity. The quantity gamma - 1 measures the degree to which gravity is not a purely geometric effect and is affected by other fields; such fields may have strongly influenced the early Universe, but would have now weakened so as to produce tiny--but still detectable--effects. Several experiments have confirmed to an accuracy of approximately 0.1% the predictions for the deflection and delay of photons produced by the Sun. Here we report a measurement of the frequency shift of radio photons to and from the Cassini spacecraft as they passed near the Sun. Our result, gamma = 1 + (2.1 +/- 2.3) x 10(-5), agrees with the predictions of standard general relativity with a sensitivity that approaches the level at which, theoretically, deviations are expected in some cosmological models.
The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50 degrees. The estimated values for the largest quadrupole harmonic coefficients (10(6)J(2) = 5435.2 +/- 34.9, 10(6)C(22) = 1549.8 +/- 15.6, 1 sigma) and their ratio (J(2)/C-22 = 3.51 +/- 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR(2), where M is the mass and R is the radius, suggesting a differentiated body with a low-density core
The interior structure of Saturn, the depth of its winds, and the mass and age of its rings constrain its formation and evolution. In the final phase of the Cassini mission, the spacecraft dived between the planet and its innermost ring, at altitudes of 2600 to 3900 kilometers above the cloud tops. During six of these crossings, a radio link with Earth was monitored to determine the gravitational field of the planet and the mass of its rings. We find that Saturn’s gravity deviates from theoretical expectations and requires differential rotation of the atmosphere extending to a depth of at least 9000 kilometers. The total mass of the rings is (1.54 ± 0.49) × 1019 kilograms (0.41 ± 0.13 times that of the moon Mimas), indicating that the rings may have formed 107 to 108 years ago.
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J that are approximately proportional to q, where q is the ratio between centrifugal acceleration and gravity at the planet's equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J, J, J, J and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter's gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north-south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter's dynamical atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.