Hironaka, in his paper [H1] on desingularization of algebraic varieties over a field of characteristic 0, to deal with singular points develops the algebraic apparatus of the associated graded ring, introducing standard bases of ideals, numerical characters ν* and τ* etc. Such a point of view involves a deep investigation of the ideal b* generated by the initial forms of the elements of an ideal A of a local ring, with respect to a certain ideal a.
Un classico teorema di G. Gherardelli afferma che una curvaC P 3 è intersezionè completa se e soltanto se è proiettivamente normale e sottocanonica. Qui si prova che, seC e a- sottocanonica ed inoltre le superficie di grado 1 + (a/2) (a pari) ovvero (a + l)/2 o (a + 3)/2 o (a + 5)/2 (a dispari) tagliano suC serie complete, alloraC è intersezione completa. Si determina inoltre un bound d funzione di a tale che, seC è a-sottocanonica e di grado dles d, alloraC è intersezione completa se e soltanto se le superficie di grado a tagliano suC una serie completa. Si discutono poi numerosi esempi di curve sottocanoniche non intersezioni complete
Let E be an indecomposable rank two vector bundle on the projective space P n , n ≥ 3, over an algebraically closed field of characteristic zero. It is well known that E is arithmetically Buchsbaum if and only if n = 3 and E is a null-correlation bundle. In the present paper we establish an analogous result for rank two indecomposable arithmetically Buchsbaum vector bundles on the smooth quadric hypersurface Qn ⊂ P n+1 , n ≥ 3. We give in fact a full classification and prove that n must be at most 5. As to k-Buchsbaum rank two vector bundles on Q3, k ≥ 2, we prove two boundedness results.Keywords: arithmetically Buchsbaum rank two vector bundles, smooth quadric hypersurfaces. MSC 2010: 14F05.Theorem. Let E be an arithmetically Buchsbaum, normalized, rank 2 vector bundle on the projective space P n , n ≥ 3. Then E is one of the following: 1. n ≥ 3 : E is a split bundle; 2. n = 3 : E is stable with c 1 = 0, c 2 = 1, i.e. E is a null-correlation bundle. * The paper was written while all authors were members of INdAM-GNSAGA. Lavoro eseguito con il supporto del progetto PRIN "Geometria delle varietà algebriche e dei loro spazi di moduli", cofinanziato dal MIUR (cofin 2008).
In [2], chap. IV, 2me partie, (7.4.8), Grothendieck considered the following problem: is any m-adic completion of an excellent ring A also excellent?In [8] I proved that, if A is an algebra of finite type over an arbitrary field k, the answer is positive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.