Over the years, different meanings have been associated to the word consistency in the distributed systems community. While in the '80s "consistency" typically meant strong consistency, later defined also as linearizability, in recent years, with the advent of highly available and scalable systems, the notion of "consistency" has been at the same time both weakened and blurred.In this paper we aim to fill the void in literature, by providing a structured and comprehensive overview of different consistency notions that appeared in distributed systems, and in particular storage systems research, in the last four decades. We overview more than 50 different consistency notions, ranging from linearizability to eventual and weak consistency, defining precisely many of these, in particular where the previous definitions were ambiguous. We further provide a partial order among different consistency predicates, ordering them by their semantic "strength", which we believe will reveal useful in future research. Finally, we map the consistency semantics to different practical systems and research prototypes.The scope of this paper is restricted to non-transactional semantics, i.e., those that apply to single storage object operations. As such, our paper complements the existing surveys done in the context of transactional, database consistency semantics.
No abstract
Besides well-known benefits, commodity cloud storage also raises concerns that include security, reliability, and consistency. We present Hybris key-value store, the first robust hybrid cloud storage system, aiming at addressing these concerns leveraging both private and public cloud resources. Hybris robustly replicates metadata on trusted private premises (private cloud), separately from data which is dispersed (using replication or erasure coding) across multiple untrusted public clouds. Hybris maintains metadata stored on private premises at the order of few dozens of bytes per key, avoiding the scalability bottleneck at the private cloud. In turn, the hybrid design allows Hybris to efficiently and robustly tolerate cloud outages, but also potential malice in clouds without overhead. Namely, to tolerate up to f malicious clouds, in the common case of the Hybris variant with data replication, writes replicate data across f + 1 clouds, whereas reads involve a single cloud. In the worst case, only up to f additional clouds are used. This is considerably better than earlier multi-cloud storage systems that required costly 3f + 1 clouds to mask f potentially malicious clouds. Finally, Hybris leverages strong metadata consistency to guarantee to Hybris applications strong data consistency without any modifications to the eventually consistent public clouds. We implemented Hybris in Java and evaluated it using a series of micro and macro-benchmarks. Our results show that Hybris significantly outperforms comparable multi-cloud storage systems and approaches the performance of bare-bone commodity public cloud storage.
Despite years of intensive research, Byzantine fault-tolerant (BFT) systems have not yet been adopted in practice. This is due to additional cost of BFT in terms of resources, protocol complexity and performance, compared with crash fault-tolerance (CFT). This overhead of BFT comes from the assumption of a powerful adversary that can fully control not only the Byzantine faulty machines, but at the same time also the message delivery schedule across the entire network, effectively inducing communication asynchrony and partitioning otherwise correct machines at will. To many practitioners, however, such strong attacks appear irrelevant.In this paper, we introduce cross fault tolerance or XFT, a novel approach to building reliable and secure distributed systems and apply it to the classical state-machine replication (SMR) problem. In short, an XFT SMR protocol provides the reliability guarantees of widely used asynchronous CFT SMR protocols such as Paxos and Raft, but also tolerates Byzantine faults in combination with network asynchrony, as long as a majority of replicas are correct and communicate synchronously. This allows the development of XFT systems at the price of CFT (already paid for in practice), yet with strictly stronger resilience than CFT -sometimes even stronger than BFT itself.As a showcase for XFT, we present XPaxos, the first XFT SMR protocol, and deploy it in a geo-replicated setting. Although it offers much stronger resilience than CFT SMR at no extra resource cost, the performance of XPaxos matches that of the state-of-the-art CFT protocols. * Work done while being a PhD student at EURECOM. 1 As an illustration, five nines reliability means that a system is up and correctly running at least 99.999% of the time. In other words, malfunction is limited to one hour every 10 years on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.