This paper presents an analytical work for better design system that contributes to the reduction of fuel consumption and emission for vehicle performance. The main technological issue on engines today is to comply with emission standards with cost-effective measures in order to keep the engine price still attractive to customer. The experimental research of engine performance are time consuming and quite expensive. The purpose of this work is to optimize engine performance using artificial neural networks (ANN). Back propagation neural network was used to optimize prediction model performance. The paper analyzed data from various experimental tests in which different engine operating parameters are measured. The paper highlights the framework and suitable model of ANN to optimize several operating parameters of the engine. The optimization includes a range of standards engine-operating conditions, with specified limits in emissions.
General TermsArtificial Neural Networks, Engine Operation, ANN approaches to management of Engine operations, ANN algorithms, architecture
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.