We introducea new approach to multilingual information retrieval based on the use of thesaurus-based query expansion techniques applied over a collection of comparable multilingual documents. This approach has been built into the SPI-
While most work in sentiment analysis in the financial domain has focused on the use of content from traditional finance news, in this work we concentrate on more subjective sources of information, blogs. We aim to automatically determine the sentiment of financial bloggers towards companies and their stocks. To do this we develop a corpus of financial blogs, annotated with polarity of sentiment with respect to a number of companies. We conduct an analysis of the annotated corpus, from which we show there is a significant level of topic shift within this collection, and also illustrate the difficulty that human annotators have when annotating certain sentiment categories. To deal with the problem of topic shift within blog articles, we propose text extraction techniques to create topic-specific sub-documents, which we use to train a sentiment classifier. We show that such approaches provide a substantial improvement over full documentclassification and that word-based approaches perform better than sentence-based or paragraph-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.