Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwide as potential therapeutic candidates. Tylophora indica (Burm. f) Merrill is a valuable medicinal plant well known in Ayurvedic practices for its immunomodulatory, anti-oxidant, anti-asthmatic and antirheumatic activities. The present study aimed to elucidate the antineuroinflammatory potential of water and hydroalcoholic leaf extracts of micropropagated plants of T. indica using BV-2 microglia activated with lipopolysaccharide as an in vitro model system and development of an efficient reproducible protocol for its in vitro cloning. Non cytotoxic doses of the water and hydroalcoholic extracts (0.2μg/ml and 20μg/ml, respectively) were selected using MTT assay. α-Tubulin, Iba-1 and inflammatory cascade proteins like NFκB, AP1 expression was studied using immunostaining to ascertain the anti-neuroinflammatory potential of these extracts. Further, anti-migratory activity was also analyzed by Wound Scratch Assay. Both extracts effectively attenuated lipopolysaccharide induced microglial activation, migration and the production of nitrite via regulation of the expression of NFκB and AP1 as the possible underlying target molecules. An efficient and reproducible protocol for in vitro cloning of T. indica through multiple shoot proliferation from nodal segments was established on both solid and liquid Murashige and Skoog's (MS) media supplemented with 15μM and 10μM of Benzyl Amino Purine respectively. Regenerated shoots were rooted on both solid and liquid MS media supplemented with Indole-3-butyric acid (5-15μM) and the rooted plantlets were successfully acclimatized and transferred to open field conditions showing 90% survivability. The present study suggests that T. indica may prove to be a potential anti-neuroinflammatory agent and may be further explored as a potential therapeutic candidate for the management of neurodegenerative diseases. Further, the current study will expedite the conservation of T. indica ensuring ample supply of this threatened medicinal plant to fulfill its increasing demand in herbal industry.
This chapter focuses on the host range, survival and epidemiology and pathogenic variation, melanin production, infection process, toxin biosynthesis and mechanism of host-specific toxins of Alternaria spp. The effective screening techniques in the breeding for resistance to Alternaria spp., mechanisms of resistance and the inheritance and incorporation of resistance are discussed and the host defence against Alternaria blight, biological and integrated Alternaria blight management in rape and Indian mustard are highlighted.
Screening of 20,000 clones of a fosmid gene bank, constructed from DNA extracted from North West Himalaya (NWH) glacier soil sample, using functional approach identified 10 esterase/lipase-producing clones. Of these, a clone designated pFG43 with an insert size of 45 kb which produced the highest concentration of enzyme (467.43 U/mg) was sequenced. Clone pFG43 contained 61 open reading frames (ORF) and of these an ORF of 1155 bp designated ME-003, was found to be closely related to a hydrolase from Acidobacteria sps (77% sequence identity and E value = 1e-164) and subsequently identified as a putative cocaine esterase. ORF ME-003 was amplified and sub-cloned using a TA vector system into E. coli (DH5α). The purified recombinant enzyme with a molecular weight of 43 kDa had optimal activity at 40 °C, pH 6 and the highest activity with shorter chain fatty acids than with higher chain length fatty acids. There is insignificant effect of inhibitors on the enzyme activity of ME-003, except PMSF which completely inhibited its activity. ME-003 activity was also inhibited in the presence of copper oxide but remained stable in presence of other metal ions. The enzyme activity was also inhibited in the presence of organic solvents; however, in the presence of 10% isopropanol, 12% of enzymatic activity was retained. Among various detergents, SDS completely inhibited enzymatic activity. The recombinant enzyme also shows enantio-specific activity against the racemic drug intermediates/precursors and exhibited 90% ee against racemic 1-phenyl ethanol and fluoxetine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.