An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as 'emergent time', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.
Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: For matter satisfying the usual energy conditions any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues -e.g., the 'horizon problem'-from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists.The goal of this article is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that each of these communities can read only the sections they are most interested in, without a loss of continuity. * Electronic address: ashtekar@gravity.psu.edu † Electronic address: psingh@phys.lsu.eduAs before, C H and the symplectic structure are insensitive to the choice ofq ab but they do
Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.
Analytical and numerical methods are developed to analyze the quantum nature of the big bang in the setting of loop quantum cosmology. They enable one to explore the effects of quantum geometry both on the gravitational and matter sectors and significantly extend the known results on the resolution of the big bang singularity. Specifically, the following results are established for the homogeneous isotropic model with a massless scalar field: i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the 'emergent time' idea; ii) the physical Hilbert space, Dirac observables and semi-classical states are constructed rigorously; iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the non-perturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime. Our constructions also provide a conceptual framework and technical tools which can be used in more general models. In this sense, they provide foundations for analyzing physical issues associated with the Planck regime of loop quantum cosmology as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.