The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve highquality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.
Intra-operative brain deformation (brain shift) limits the accuracy of image-guided neuro-surgery systems. Ultrasound imaging as a simple, fast and being real time has become an alternative to MR imaging which is an expensive system for brain shift calculation. The main challenges due to speckle noise and artifacts in US images, is to perform an accurate and fast registration of Us images with pre-operative MR images. In this paper an efficient point based registration method based on the alignment of probability density functions called Coherent Point Drift (CPD) is implemented and compared to the conventional ICP method. To perform this, a brain phantom that allows simulating the brain deformation is made. As the results of our phantom study confirm the CPD method clearly outperforms the ICP algorithm for brain shift calculation. Also the result proves that using intra-operative US has led to recover almost 80% of displacement in the region of interest.
There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal due to low energy per pulse-the signal is easily buried in noise leading to low quality images. Here, we describe a signal de-noising approach for LED-based photoacoustic signals based on dictionary learning with an alternating direction method of multipliers. This signal enhancement method is then followed by a simple reconstruction approach delay and sum. This approach leads to sparse representation of the main components of the signal. The main improvements of this approach are a 38% higher contrast ratio and a 43% higher axial resolution versus the averaging method but with only 4% of the frames and consequently 49.5% less computational time. This makes it an appropriate option for real-time LED-based photoacoustic imaging.
This improved objective function based on RC in the wavelet domain enables accurate non-rigid multi-modal (US and MRI) image registration which is robust to noise. This technology is promising for compensation of intra-operative brain shift in neurosurgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.