This improved objective function based on RC in the wavelet domain enables accurate non-rigid multi-modal (US and MRI) image registration which is robust to noise. This technology is promising for compensation of intra-operative brain shift in neurosurgery.
In recent years intra-operative ultrasound images have been used for many procedures in neurosurgery. The registration of intra-operative ultrasound images with preoperative magnetic resonance images is still a challenging problem. In this study a new hybrid method based on residual complexity is proposed for this problem. A new two stages method based on the matching echogenic structures such as sulci is achieved by optimizing the residual complexity (RC) value with quantized coefficients between the ultrasound image and the probabilistic map of MR image. The proposed method is a compromise between feature-based and intensity-based approaches. The evaluation is performed on both a brain phantom and patient data set. The results of the phantom data set confirmed that the proposed method outperforms the accuracy of conventional RC by 39%. Also the mean of fiducial registration errors reached to 1.45, 1.94 mm when the method was applied on phantom and clinical data set, respectively. This hybrid method based on RC enables non-rigid multimodal image registration in a computational time compatible with clinical use as well as being accurate.
In this work, a new shape based method to improve the accuracy of Brain Ultrasound-MRI image registration is proposed. The method is based on modified Shape Context (SC) descriptor in combination with CPD algorithm. An extensive experiment was carried out to evaluate the robustness of this method against different initialization conditions. As the results prove, the overall performance of the proposed algorithm outperforms both SC and CPD methods. In order to have control over the registration procedure, we simulated the deformations, missing points and outliers according to our Phantom MRI images.
Traffic engineering helps to use network resources more efficiently. Network operators use TE to obtain different objectives such as load balancing, congestion avoidance and average delay reduction. Plane IP routing protocols such as OSPF, a popular intradomain routing protocol, are believed to be insufficient for TE. OSPF is based on the shortest path algorithm in which link weights are usually static value without considering network load. They can be set using the inverse proportional bandwidth capacity or certain value. However, Optimization theory helps network researchers and operators to analyze the network behavior more precisely. It is not a practical approach can be implemented in traditional protocol .This paper proposes that to address the feasibility requirements, a weight set can be extracted from optimization problem use as a link metric in OSPF. We show the routes that selected in OSPF with these metric distribute the traffic more close to optimal situation than routes from OSPF with default metric
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.